

te of the "DNS
ivacy'' project

Stéphane Bortzmeyer
AFNIC

bortzmeyer@nic. fr

< [

Warsaw OARC workshop

o May 2014: talk of the "DNS privacy project”

o See the slides for the context

A brief reminder

O A DNS query reveals what you're interested in
(_bittorrent-tracker._tcp.domain.example)

@ Eve can be on the wire (sniffer) but also in the name servers

(“DNSCrypt doesn't prevent third-party DNS resolvers from
logging your activity”, to quote the DNSCrypt documentation)

Encryption is not everything

@ Send as little data as possible (RFC 6973, section 6.1)
Q Encrypt it

1) is necessary against the evil name server. 2) is necessary against
third-party sniffers.

State of the project

On the standards side:

@ RFC 7626 “DNS Privacy Considerations” published

@ RFC 7816 “DNS Query Name Minimisation to Improve
Privacy” published (status “experimental”)

© Future RFC "Specification for DNS over TLS" approved by
IESG, in the RFC Editor queue (status “standard”)

@ A few drafts are still under discussion

Running code

Stolen from Sinodun https://portal.sinodun.com/wiki/
display/TDNS/DNS-over-TLS+implementations

Client/Server Client - Stub Client - Recursive Server - Server -
Recursive Auth

Software Idns digit getdns BIND getdns* Unbound BIND Unbound BIND NSD BIND

(drill) (dig)

Port based ° ° ° ° °

TLS

TCP fast (/] (/] P

open**

Connection (/] (/] (] WIP WIP (/] (] (] o

reuse

Pipelining** na (] (] na (] (-] (-] o

OOOP*++ na (] (] na wiIpP (]

TLS (/] 2016 (/]

authentication

EDNSO0 (/]

Padding

EDNSO0 (] 2016

Keepalive

https://portal.sinodun.com/wiki/display/TDNS/DNS-over-TLS+implementations
https://portal.sinodun.com/wiki/display/TDNS/DNS-over-TLS+implementations

Minimising the QNAME

@ No need to send the full QNAME to the authoritative name
servers

@ Ask NS fr to the root name servers instead of AAAA
www.internautique.fr

@ In resolvers only (no change of the protocol)

Implementation of QNAME minimisation

@ Unbound (version > 1.5.7). Off by default. See Ralph
Dolman’s’ talk.

@ Knot Resolver (currently beta). On by default. See Ondre;j
Sury's talk.

QNAME minimisation with Knot

dig -x of an IPv6 address, seen by tcpdump:

> 38773% [l1au] NS? aRpA. (33)
> 22056% [laul NS? Ip6.aRPa. (37)
> 43002% [1lau] NS? 2.ip6.arPA. (39)

The annoying broken name servers

Knot retries with full QNAME when receiving NXDOMAIN:

V ANV ANV AV

24014% [1au]l A? WwW.UpENn.edU. (42)

24014%- 2/0/1 CNAME www.upenn.edu-dscg.edgesuite.net., RRSIG (270)
52576% [lau] NS? edGeSUItE.NEt. (42)

52576- 0/17/15 (1034)

22228 [laul] NS? EdU-DScG.EdGesUITe.nET. (51)

22228 NXDomain¥- 0/1/1 (114)

1355 [lau] A? WWW.UPenN.edu-dSCG.EdgESuItE.net. (61)

No way to know if it is an ENT

(ENT = Empty Non-Terminal domain name) Request for
www.long.verylong.detail.example:

> 19881% [laul NS? ExaMpLE. (36)
[NXDOMAIN received]
> 40708% [laul AAAA? www.LONg.VeRylONG.DEtaIl.eXamPLE. (61)

(Same thing with Unbound)

< 33070 NXDomain*- q: NS? example. 0/6/1
> 31355% [laul A? www.long.verylong.detail.example. ar: . OPT UDPsize=4

afpric-

Encrypting data

@ DNScurve/DNScrypt.

@ TLS. Relies on the well-known TLS. Main version, above TCP
and therefore persistent connections (RFC 7766). Port 853.

DNScrypt

https://dnscrypt.org/

Not a standard (but there is running code, and deployment)
Encrypt DNS requests to a trusted resolver

Uses UDP

No cryptographic agility

Resolver authentified by its public key (last column in the
CSV file)

Free software

Many public resolvers (come and go quite often)

afpric-

https://dnscrypt.org/

DNScrypt encrypted

17:26:41.720678 IP (tos 0x0, ttl 64, id 59095, offset 0, flags [+], pro
192.168.2.9.33725 > 212.47.228.136.443: UDP, bad length 1664 > 1472

17:26:41.721372 IP (tos 0x0, ttl 64, id 59095, offset 1480, flags [none
192.168.2.9 > 212.47.228.136: ip-proto-17

17:26:41.794366 IP (tos 0x0, ttl 64, id 59102, offset 0, flags [none],
192.168.2.9.33725 > 212.47.228.136.443: [bad udp cksum 0x8143 -> 0x

17:26:41.840503 IP (tos 0x0, ttl 50, id 52891, offset 0, flags [nonel,
212.47.228.136.443 > 192.168.2.9.33725: [udp sum ok] UDP, length 56

TLS with Unbound

Implemented for a long time (1.4.227)

ssl-service-key: "/etc/unbound/privatekeyfile.key"
ssl-service-pem: "/etc/unbound/publiccertfile.pem"
interface: 2001:db8:1::dead:beef@853

ssl-port: 853

If you don't know OpenSSL :

openssl req -x509 -newkey rsa:4096 \
-keyout privatekeyfile.key -out publiccertfile.pem \
-days 1000 -nodes

afpric-

Unbound starts and answers

unbound [12959:0] debug: setup TCP for SSL service
unbound [12959:0] debug: SSL DNS connection ip4 192.168.2.1 port 52185 (

unbound [12959:0] debug: Reading ssl tcp query of length 59

And if | don't have a server?

https://portal.sinodun.com/wiki/display/TDNS/
DNS-over-TLS+test+servers

Testing only, no production (one serves only one zone)

https://portal.sinodun.com/wiki/display/TDNS/DNS-over-TLS+test+servers
https://portal.sinodun.com/wiki/display/TDNS/DNS-over-TLS+test+servers

First client, digit

https://ant.isi.edu/software/tdns/index.html Not fully
maintained? (Strange errors, no IPv6)

% ./digit/digit -f domains-short -t tls -r 192.168.2.9 -p 853
#fsdb index t_complete t_avg t_individual t_sum t_mean id
query_send_ts response_receive_ts program_start_ts

1 0.614152 0.614152 0.614152 0.614152 0.614152 19383

1459097697 .585573 1459097698.199725 1459097697 .585572

https://ant.isi.edu/software/tdns/index.html

Second client, getdns
https://getdnsapi.net/, see Sara Dickinson's talk

% ./getdns/src/test/getdns_query ©192.168.2.9 -s -A -1 L \
Wwww.bortzmeyer.org

Response code was: GOOD. Status was: At least one response was returned

(-s: stub resolver, -A: ask for addresses, -I L: TLS transport)

afpric-

https://getdnsapi.net/

TLS in Go

https://miek.nl/2014/August/16/go-dns-package/

¢ := new(dns.Client)
c.Net = "tcp-tls"
if *insecure {
c.TLSConfig = new(tls.Config)
c.TLSConfig.InsecureSkipVerify = true
}

in, rtt, err := c.Exchange(m, net.JoinHostPort(mns, "853"))

https://miek.nl/2014/August/16/go-dns-package/

The pleasures of TLS authentication

@ No auth.: vulnerable to Mallory (the man in the middle)

@ Auth.: lots of trouble (“do you really trust this expired
auto-signed certificate using SHA-17")

© No hard rules: different profiles for authentication

% ./tls my-resolver internautique.fr
Error in query: x509: certificate signed by unknown authority

% ./tls -k my-resolver internautique.fr
(time 43051 us) 2 keys. TC=false

See the traffic

% tshark -n -d tcp.port==853,ssl -r /tmp/dnstls.pcap

4 0.002996 192.168.2.9 -> 192.168.2.9 SSL Client Hello

6 0.594206 192.168.2.9 -> 192.168.2.9 TLSv1.2 Server Hello, Certif
8 0.734094 192.168.2.9 -> 192.168.2.9 TLSv1l.2 Client Key Exchange
16 0.751614 192.168.2.9 -> 192.168.2.9 TLSv1l.2 Application Data

17 0.759223 192.168.2.9 -> 192.168.2.9 TLSv1l.2 Application Data

(With Wireshark, Analyze — Decode as — SSL)

(Provisional) Conclusion

@ We have running code

@ Deployment almost zero, currently

