Abusing Resources to Process
7TB of PCAP Data

... Or how not to fork-bomb yourself

Roy Hooper
Demand Media
OARC Fall 2013 Workshop

Demand
Media

Introduction

Interisle’s report raised lots of new questions
about DNS collisions

Triggered further analysis by NTAG and others

CANN’s

3 week window for comments didn’t

eave much time for analysis
nterisle’s work took a week for each pass, with

only 8 cores...

DNS-OA
done at

This cou

RC’s policies require analysis work be
DNS-OARC

d be challenging...

DITL Data Size

 Examined RAW DITL data for 2012 and 2013
Processed only root servers

Year Size Queries Root Servers
April 2012 5.2TB 45 billion * 10

May 2013 1.8 TB 39 billion * 11
Combined 7TB 84 billion

650,000 gzip-Compressed PCAP files
7 TB is big, but not huge

Processing environment could make time
constraints a serious problem

3 Demand
LJ Media

PCAP Conversion Tools

PacketQ
Tcpdump
Tshark

And others... like pypcap for Python and
Net::Pcap for Perl

Which one’s right for the job?
Benchmarked a small sample of PCAP files

PCAP tool performance

===Runtime (sec)

250
2§\
200
150 /
131 / ===kQueries/sec
100
98
50
O T T T 1
PacketQ TCPDump + TCPDump + Tshark
Pigz Gunzip2
Demand

Media

PCAP Conversion Tools

Tool Queries Performance Internal Difference %
Found Gun2|p (vs Tshark)

PacketQ 1657799 f R R R R -0.040%
ezt 1658156 No -0.018%

1658449 & Yes

 Wanted something other than PacketQ
Interesting difference in packet counts... Hope
it’s not a problem! Pretty close, however.

 Went with tried and true tcpdump

Demand
Media

Tool Invocation

PacketQ packetq --csv -s "SELECT src_addr,qname,qtype from dns WHERE qr=0"
pcap.gz | ...
Tcpdump pigz -dc pcap.gz | tcpdump -n -r - |...

TShark Tshark -n -r pcap.gz -R "dns.flags.response == 0" -T fields -e
dns.gry.name -e ip.src -e dns.qry.type | ...

Tcpdump will be more complex to work with (string processing)
PacketQ still faster...

... but we didn’t have a recent version yet

... and wanted to get same results with different software

Demand
Media

Conversion and Filtering

Decompress, parse PCAP and convert to text,
then filter out gTLDs

Take intermediate results and produce per-
gTLD files sorted by SLD

Have 128 threads of execution to take harness
Validate our extraction using Interisle’s report

* How are we going to do this quickly?

) 9 Y
=]

4 4
Medqila

Hardware Donation

* Some members got together and donated of
a pair of Dell R810s

— 32 cores (64 threads)
— 144gb RAM
— 4TB of local storage

 Up to 128 threads of execution and 288gb of
RAM to abuse!

e Acceptable compute power ... hopefully!

) 9 Y
=]

4 4
Medqila

Extraction Goals

Include only queries for the new gTLDs

Produce a compact data set suitable for
further analysis

Do it quickly! Less than 3 weeks.
Match the Interisle results

Opportunity for Parallelism

e Two machines, 64 cores, and lots of CPU work
to do with tcpdump
* A number of tools at our disposal:
— Pigz — Multi-threaded gzip
— Pipes!
— pigz | tcpdump | filter
— Xargs -P

Challenges

Keeping the CPUs busy

Avoiding swap

NFS can be slow

Be wary of local disk bottlenecks

Dataset doesn’t fit on local disk (rsync server not
a good option)

Babysitting multi-day jobs

Finding problems after 2 days of processing and
starting over

) 9 Y
=]

Medqila

Processing Challenges

Used Perl because of it’s string processing
performance

Perl Regexes too slow for the patterns needed
for tcpdump output (Despite being fast)

Devel::NYProf to the rescue
Had to use things like rindex() and substr()

Ugh, manual string processing! Reminds me
of C...

) 9 Y
=]

4 4
Medqila

Extraction Process

* Produced an intermediate set of files
— One file per PCAP file
— Text files: srcaddr gtype gname
— Converted gname to lowercase
— Gzipped
* Pipelined
* pigz | tcpdump | parse+filter.pl | pigz
 That’s only 4 processes...

Going Parallel

Split work between an3 and an4 by splitting
file list in half

xargs -P40 -n 1
Going higher didn’t yield apparent speed gain

CPUs pretty busy (load avg in 50s, 80%+ CPU
use)

NFS Bottleneck?
Local IO Bottleneck?

) 9 Y
=]

xargs —P: Easy Parallelism

xargs parallel mode

Automatically spawns new processes as work is
finished

Needs a small script to manage the remainder of the
pipeline

Wrote a shell script wrapper:

— create output dirs

— run filter

— pipe to pigz

Could have had the filter do that... And did in later
variants of the scripts

Producing per TLD files

Re-process compressed intermediate files
Parse out gname into TLD, SLD

Split into one file per TLD

Eventually sort per-TLD files by SLD
Eventually compress

Potentially slow

Parallelize!

Going Parallel

Relatively CPU hungry
Use xargs -P32 again, but with -n 100

Take advantage of O_APPEND flag to open(2)

Multiple writers safe with use of write(2)

Each splitter process opens per-TLD files as
needed

Exhausted all File Handles on first try!

Hitting Limits

Had to increase kern.maxfiles,
kern.maxfilesperproc

Up to 45000 open files with xargs -P32

O bound by local disk, not CPU
— Would be better if we could compress first!

Reduced parallelism to around -P20

What about that forkbomb?

At one point, | decided to fork one gzip per
TLD per process

| didn’t do the math first... 1400*32... 44,800

Noticed what was happening and shut it down
quickly

Need to be careful when forking!

Final sorting and compression

The unix sort(1) utility allows in-memory
sorting via -S

Avoids temporary files

Selected a size suitable to the bulk of the
intermediate files with 20 processes running

Sorted by SLD
Files ready for use!

Shrinking Data

* |[nput: 7TB, 84 billion queries
* |Intermediate: 30GB (excluding .com)

* Final data:
2012: 1.3% of input (0.6 billion queries)
2013: 2.4% of input (1.4 billion queries)

* Much easier to process per-gTLD files

) 9 Y
=]

-) A4
Meqala

Differences in Results

* As expected, tcpdump and PacketQ have
slightly different output

e Total query counts for new gTLDs are close:

— 2012: 2.0% fewer queries than Interisle (862M vs
881 M)

— 2013: 1.4% more queries than Interisle (1334M vs
1316M)

* Size on disk of input data matches Interisle
report (page 21)

.com Zonefile intersection

* Repeated initial extraction of intermediate data,
out included only .com

* Processed a zone file that overlapped with the
2012 and 2013 DITL runs to produce an SLD string
list for each

* Wrote a simple filter daemon
— Load entire string list into memory in a hash table
— Pre-fork some children
— Read lines of input from network connections
— Respond with entries for SLDs not in zone file

) 9 Y
=]

Medqila

.com Zonefile Intersection

Used xargs to feed intermediate file contents
in parallel to the filter

Pipeline involved pigz | nc | pigz
Produced a series of compressed output files,
one per intermediate file

Generated query counts and unique string list
from those

Possible Improvements

Local disk is slow! Avoid storing uncompressed
data?

Perhaps run one listener per TLD that receives
network streams from multiple clients and writes
them compressed to disk

Just expand everything after DITL runs and keep
intermediate data around?

All this seems familiar

Big Data problems? Well, not that big, but big
enough.

What's Next?

* Pre-process all DITL runs into a Hadoop cluster
(or similar)?
— Hive, Hbase, Cassandra?

* Cluster would be nice

— Avoid re-inventing the wheel every time someone
wants to analyze DITL data

— Would lets scientists dive right in and analyze
— Needs hardware and someone to import data
— Bonus: Distributed archive of DITL data to protect it

'Y 5 =M 4
L«" = | - A
| &

Media

What's Next?

 Why the differences between tcpdump,
PacketQ and TShark?

— Handling of corrupt packets and queries?
— Other?

 What kinds of raw UTF-8 TLDs are making it to
the root (rather than punycode)?

* Help improve PacketQ —it’s damn good!

