
The use of Elliptic Curve Cryptography in

DNSSEC

Francis Dupont

Internet Systems Consortium

fdupont@isc.org

3 may 2013

Abstract

The RFC 6605 introduced the modern cryptography based on ellip-
tic curves into DNSSEC. This document explains what are the advan-
tages, and the few disadvantages, to switch from current DSA/RSA
keys and signatures to Elliptic Curve Cryptography.

Modular Group Cryptography

Some Maths

All objects here are based on an abstract algebraic structure named a field in
English, un corps in French, ein Körper in German. In fact definitions are
different but give in the finite case the same objects with pk elements, p being
a prime, noted Fpk or GF (pk), with the common addition and multiplication
modulo pk.

In the finite field Fp, the elements at the exception of 0 form a group for
the multiplication, so for any a the set {1, a, a2, . . .} is a cyclic subgroup with
a number of elements which divides (by Lagrange’s theorem) the number of
elements of the whole group, i.e., p − 1, so for instance ap−1 ≡ 1 (mod p)
when p is a prime (as known as the Fermat’s little theorem).

Diffie-Hellman example

The Diffie-Hellman protocol is the simplest application of these maths to
cryptography. Take a big prime p so p−1

2
is also prime, and a base g so the

1



group of the powers of g has p − 1 different elements (with a simple extra
condition on p, 2 (or 3 or 5) can be chosen for g).

To get x from gx modulo p (aka the discrete logarithm) is a hard problem
for large values of p. The idea is to apply the identity (gx)y ≡ (gy)x ≡ gxy to
build a shared secret gxy from private x and y, and public gx and gy.

Signing

The standard signing protocol over modular groups is DSA [1], an ElGamal
signature scheme.

Note if RSA uses modular arithmetic, it is not based on modular groups.
In fact its hard problem is the factorization of the product of two large primes,
not the discrete logarithm.

Elliptic Curve Cryptography

The discrete logarithm problem on not special elliptic curves was considered
for cryptography because it has no better solution than the generic (a.k.a.
brute force) one.

An elliptic curve over Fp (EC cryptography uses too curves over F2m but
not in the DNSSEC context) are points of coordinates x and y (in Fp) veri-
fying an equation like y2 ≡ x3+ax+ b[p] (note the cube makes this equation
not defining an ellipse) with a point at infinity (so the term projective for the
plane).

An addition is defined on the curve with the point at infinity as the
identity element, given a group with a number of elements (named the order
of the group) close to the prime p (by the Hasse’s theorem), and the curve
can be chosen to get this number a prime (case of DNSSEC curves) or a
small multiple of a prime [2].

With a base point G, all the cryptographic protocols defined on the gn[p]
modular group can be translated to the n ∗G EC group (so we have ECDH
and ECDSA, but no ECRSA).

Operations over an EC group are faster than over the equivalent (in term
of strength of the hard problem to solve to break the crypto) modular group,
not because the power and multiply are replaced by multiply and add (these
are only notations) but because the primes are far smaller (256 bits vs. 2048
or 3072 bits) and can be chosen to make modular arithmetics far simpler
without an adverse impact on the discrete logarithm problem hardness.

2



Application to DNSSEC

The RFC 6605 defines the use of ECDSA for signing, i.e., in DNSKEY and
RRSIG resource records. The used elliptic curves are the P-256 and P-384
NIST pseudo-random curves defined on Fp fields with p 256 and 384 bit
carefully chosen primes, and base points with 256 and 384 bit prime orders.
The hash algorithms are SHA-256 and SHA-384.

Public keys Q are uncompressed curve points, i.e., 512 or 768 bit strings
formed by the concatenation of the two point coordinates x | y. Private keys
d are 256 or 384 bit numbers between 1 and order − 1, with Q = d ∗G.

A signature is a pair of numbers modulo the order and must be encoded
on 32 or 48 octets.

With PKCS#11 parameters are a bit more specific:

• mechanisms must have the CKF_EC_F_P (Fp support),
CKF_EC_NAMEDCURVE (ASN.1 Object ID for the parameters, i.e.,
the curve) and CKF_EC_UNCOMPRESS (uncompressed, i.e., two co-
ordinates, form of EC points) flags. Note they seem to be the common
minimal choice.

• parameter attribute is filled with the Object ID of the curve (prime256v1
1.2.840.10045.3.1.7 or secp384r1 1.3.132.0.34) in ASN.1 DER encoding
of a choice.

• point attribute is filled with the ANSI X9.62 DER encoding in the
uncompressed form, i.e., the Octet String tag, the length of the string,
the UNCOMPRESSED tag (4) and the two coordinates on 256 or 384
bits each.

Of course the device must support the CKM_EC_KEY_PAIR_GEN mech-
anism with the CKF_GENERATE_KEY_PAIR flag and the CKM_ECDSA
mechanism with CKF_SIGN and CKF_VERIFY flags. Note there is no way
to check in the PKCS#11 API the support of a specific curve but any HSM
designed for the US or the international market is supposed to support the
two very standard curves selected for DNSSEC.

Advantages and disadvantages

First in DNSSEC the ECDSA parameters are one of two curves, so there is no
parameter generation consideration. This lack of freedom has a questionable
impact on security. In our opinion, it makes things being simpler and removes

3



some occasions to do something the wrong way, and for sure in all cases in
an expensive way.

As explained before, the numbers used in ECDSA are smaller than for
RSA or DSA, so the operations are really faster. RSA can be optimized,
usually RSA signing uses the Chinese Remainder Theorem (the dP , dQ and
qInv values you can find in the private key after the p and q secret primes),
this leads to near 4 time better performance, for instance:

• 30500 1024 bit private RSA’s in 10s (with CRT)

• 9341 1024 bit private RSA’s in 10s (without CRT)

EC cryptography gets similar optimizations as shown by looking in OpenSSL
1.0.1e crypto/ec directory with for instance the ecp_nistp256.c 50kb file.
By the way there is no equivalent file for the 384 bit curve? To finish with
OpenSSL which if it is not the best written but is usually the fastest imple-
mentation, the magic configuration flag is enable-ec_nistp_64_gcc_128 but
it does not seem to be critical, i.e., it does not make a huge difference for
signing.

If we compare ECDSA to RSA and DSA, exactly 256 bit ECDSA with
2048 bit RSA (note it should be in fact 3072 bit RSA) and 2048 bit DSA:

• 62991 256 bit ECDSA signs in 10s

• 25294 256 bit ECDSA verify in 10s

• 4778 2048 bit private RSA’s in 10s

• 153062 2048 bit public RSA’s in 10s

• 15233 2048 bit DSA signs in 10s

• 12622 2048 bit DSA verify in 10s

So ECDSA is 4 time faster than the equivalent DSA and here 12 time faster
than RSA, so one can easily argue ECDSA signing is 20 time faster than the
equivalent RSA one.

On HSMs the difference is smaller (perhaps ECC implementations are
less mature on HSMs?) but still with an advantage for ECDSA, For instance
the SafeNet Luna 5.0 PCI-E board can perform 1200 2048 bit RSA vs 1800
256 bit ECDSA signatures per seconds according to its product brief [4].

About the signature size, both DSA and ECDSA give a signature size 4
time the “symmetric key strength” and clearly smaller than RSA even this

4



advantage is not so great, i.e., for resource record reduced sizes one wins
more with DNSKEYs.

ECDSA inherits from DSA its two main disadvantages. First the veri-
fication is slower than the signing, second the signing procedure requires a
random number:

• you must ask a cryptographer to qualify exactly the randomization
requirement

• anyway a standard ([5], [6]) pseudo-random number generator is enough
to fulfill the requirement

• to reuse the same value is trivially broken, even with ECDSA (it is
alleged this mistake was the base of the PS3 secret key recovery)

• in conclusion the evaluation of an ECDSA device should be done on
the secret generation and the signing procedure together

DNSSEC ECDSA in practice

Recent bind 9, nsd, oubound, etc, support ECDSAP256SHA256 and
ECDSAP384SHA384 DNSKEY and RRSIG resource records. Associated
tools, for instance dnssec-keygen and dnssec-signzone, too. But the sit-
uation is not so good for the perl package Net::DNS::SEC which has no
ECDSA nor GOST support.

According to SecSpider [7] DNSSEC deployment statistics there is cur-
rently no ECDSA keys in the global DNS, but a few (23) GOST [8] keys
which as the official name ECC-GOST suggests are based on Elliptic Curve
Cryptography too.

Today we have no list of registries accepting ECDSA KSKs or associated
DSs but up-to-date registry software, for instance EPP servers, should sup-
port any registered so legal algorithm value. For the possible check of KSKs,
the answer is in the DNSSEC support library, i.e., it will work for bind 9 or
unbound (ldns) but not for perl.

Other uses of ECC and Conclusion

As noted before, ECDSA is not the first DNSSEC signature scheme based on
Elliptic Curve Cryptography. GOST (full name ECC-GOST) uses an elliptic
curve on a 256 bit prime field and the signing process is very closed to the

5



ECDSA one. In fact the main technical difference between ECC-GOST and
ECDSAP256SHA256 is in hash algorithms (GOST R 34.11-94 vs. SHA-256).

It can be expected most national cryptography agencies will follow the
Russian example and both will base the locally enforced signature on Elliptic
Curve Cryptography, and try to get an algorithm code point at IANA. It is
already the plan for China. . .

I proposed to modernize the TKEY mechanism with modern cryptogra-
phy too, so to replace DH by ECDH, SHA-1 by SHA-256, etc.

To finish there are a clear tendency from national security regulators to
push ECDSA in place of RSA. I have seen two medium term more than
convincing arguments:

• to make minimal RSA modulus size bigger and bigger, so making
ECDSA very attractive and RSA less and less praticable

• to disallow the PKCS#1 v1.5 signature mechanism in favor of better
schemes (e.g., PSS).

So adapting a French expression, the years of RSA are numbered. And its
successor is clearly ECDSA!

References

[1] NIST, FIPS PUB 186-3 Digital Signature Standard (DSS),
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf,
NIST, June 2009

[2] NIST, Recommended Elliptic Curves for Federal Government Use,
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf,
NIST, July 1999

[3] P. Hoffman, W.C.A. Wijngaards, Elliptic Curve Digital Signature
Algorithm (DSA) for DNSSEC, RFC 6605, IETF, April 2012

[4] SafeNet, Luna PCI-E 5.0 Hardware Security Module (HSM) Product
Brief,
http://www.safenet-inc.com/WorkArea/DownloadAsset.aspx?id=8589946455,
SafeNet Inc., 2011

6



[5] NIST, Recommendation for Random Number Generation Using Deter-
ministic Random Bit Generators,
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf,
NIST, January 2012

[6] D. Eastlake, J. Schiller, S. Crocker, Randomness Requirements for
Security, RFC 4086, BCP 106, IETF, June 2005

[7] UCLA, SecSpider Global DNSSEC deployment tracking, Deployment
Stats, http://secspider.cs.ucla.edu/stats.html

[8] V. Dolmatov, A. Chuprina, I. Ustinov, Use of GOST Signature Algo-
rithms in DNSKEY and RRSIG Resource Records for DNSSEC, RFC
5933, IETF, July 2010

DSA and ECDSA signing algorithms in details

The DSA signing procedure is from the hash H(m) of message m with the
parameters prime p, subprime q and base g, and secret key x (public key is
parameters and y ≡ gx (mod p)):

0. take a new k at random with 0 < k < q

1. calculate r ≡ (gk (mod p)) (mod q)

2. in the unlikely case r = 0 retry in 0. with another k

3. calculate s ≡ k−1(H(m) + xr) (mod q)

4. in the unlikely case s = 0 retry in 0. with another k

5. the signature is the pair (r, s)

The ECDSA signing procedure is from the hash H(m) of message m with
the parameters curve, point G of order n, and secret key dA (public key is
parameters and QA = dA ∗G:

0. take a new k at random with 0 < k < n

1. calculate the curve point (x1, y1) = k ∗G

7



2. r ≡ x1 (mod n)

3. in the unlikely case r = 0 retry in 0. with another k

4. calculate s ≡ k−1(H(m) + rdA) (mod n)

5. in the unlikely case s = 0 retry in 0. with another k

6. the signature is the pair (r, s)

8


