Quantifying the Impact of DNSSEC Misconfiguration

Casey Deccio Sandia National Laboratories

2010 DNS-OARC Workshop (2)

Denver, CO

Oct 14, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Availability and security

- DNS must be both *available* and accurate
- DNSSEC is a security retrofit
 - DNSSEC increases maintenance complexity
 - Troubleshooting is difficult
- Misconfigurations abound, rendering name resolution unavailable

Objectives

- Establish model and metrics for assessing availability of DNSSEC deployments
- Quantify complexity that may increase potential for DNSSEC misconfiguration
- Introduce techniques to mitigate effects of misconfiguration

Outline

- DNSSEC availability model
- DNS complexity analysis
- Misconfiguration mitigation
- Summary

Outline

DNSSEC availability model

- DNS complexity analysis
- Misconfiguration mitigation
- Summary

Classes of DNSSEC misconfiguration

- Zone misconfigurations
 - Missing, expired, or bogus RRSIG
 - Missing DNSKEYs
- Delegation
 misconfigurations
 - No DNSKEY in child matching any DS in parent
 - Missing NSEC RRs for insecure delegation
- Trust anchor misconfiguration
 - Stale trust anchor at resolver

Failure potential

- Probability of bogus validation
- Based on fraction of responsive authoritative servers serving bogus or incomplete data
 - Resolvers will retry if server non-responsive
 - Not all servers will retry if server responds with bogus data
- Assumption: resolver queries any authoritative server with equal probability

Failure potential

- Formula extends to chain of trust in ancestor zones
- Failure potential of each zone is combined independently of one another

8

DNSSEC Deployment Survey

- Polled ~1500 production signed zones over a six-week period
- Recorded validation errors resulting from misconfiguration

Statistic	Value	
Production signed zones polled	1,456	
Total misconfigurations resulting in certain failure	194	
Zone-class misconfigurations	134 (69%)	
Delegation-class errors resulting in certain failure	60 (31%)	
Errors (any class) caused by misconfigured ancestor zones	61 (31%)	
	Sandia	9

Failure Potential of Zones

Outline

- DNSSEC availability model
- DNS complexity analysis
- Misconfiguration mitigation
- Summary

Complexity analysis

- Complexity creates potential for misconfiguration
- Hierarchical complexity:
 - Size of ancestry (zone depth)
- Administrative complexity:
 - Servers administered by distinct organizations

Hierarchical reduction potential

- If ancestry might reasonably be consolidated, what is the reduction?
- Ancestry reduced, but original namespace can be preserved

Administrative Complexity

- How diverse is the set of organizations administering a zone?
- Complexity measured by random sampling (with replacement) of authoritative servers to determine the probability that two organizations are selected

Ins.bar.com
bar.com
$$AC = 1 - \sum_{o \in orgs} \left(\frac{|servers(o)|}{|all_servers|} \right)^2 = 0.5$$

Hierarchical Reduction Potential

15

Administrative complexity

16

Outline

- DNSSEC availability model
- DNS complexity analysis
- Misconfiguration mitigation
- Summary

Avoiding and mitigating effects of misconfiguration

- Follow best practice operational standards (RFCs)
 - Key rollover procedures
 - Trust anchor rollover procedures
- Validation diligence
 - Resolver keeps trying alternative authoritative servers to find valid response
 - Optimality can be difficult where is the break in the chain?
 - Implemented in BIND 9

Soft anchoring

- DNSKEYs typically don't change often
- Resolvers configured with "hard" (traditional) trust anchors
- "Soft" anchors are derived from DNSKEYs authenticated from existing hard anchors

DNSKEY

Zone data

DNSKEY

Zone data

ላ

DS

DS

Impact of soft anchoring

- Resolution not inhibited by:
 - zone-class misconfigurations in ancestry
 - delegation-class misconfigurations

DNSKEY

Maintaining soft anchors

- Resolvers follow procedure similar to that used for rolling hard trust anchors (RFC 5011)
- Resolver periodically polls soft anchor zone

- Soft anchor addition:
 - Newly authenticated **DNSKEYs** persist for "hold down" period
 - New DNSKEY seen with corresponding DS
- Soft anchor removal:
 - Delegation to soft anchor made insecure
 - **DNSKEY** is revoked
 - DNSKEY and its DS RR are removed

21

Soft anchoring limitations

- Doesn't help when misconfigurations are at or below the bottom "link" in the chain of trust
- Resolver must have authenticated soft anchors through valid chain of trust before misconfiguration
- Scalability
 - Maintenance overhead of all trust anchors may be intense
 - Least-recently used policy may help

Outline

- DNSSEC availability model
- DNS complexity analysis
- Misconfiguration mitigation
- Summary

Summary

- DNS responses must be both accurate and available
- DNSSEC deployment requires careful deployment and maintenance
- Soft anchoring can mitigate effects of misconfiguration

Acknowledgements

- Jeff Sedayao, Krishna Kant at Intel Corporation
- Prasant Mohapatra at UC Davis

Questions?

ctdecci@sandia.gov

