DNS Query Traffic Increase on Caching DNS Resolvers

DNS-OARC Workshop October 13-14, 2010 Denver

<u>Hiroaki linou</u> and <u>Minoru Zushi</u> (NTT Communications, OCN) Haruhiko Nishida and <u>Kazumichi Sato</u> (NTT Laboratories)

Outline

- 1. Query Traffic Increase on OCN DNS Caching Servers
 - Introduction to OCN
 - Query Trends on OCN DNS Caching Servers
 - Query Increase Analysis
- 2. Topic of near future
 - Influence of DNSSEC

Introduction to OCN

- Background of OCN (AS4713)
 - Largest ISP in JAPAN
 - 8 million customers

DNS operation

- •6 billion queries/day (70,000 queries/sec)
- 150 DNS servers
 - 50 name servers / 100 caching servers
- 2 kinds of DNS application
- BIND9 / Vantio (Vantio has 6 times the performance compared to BIND)

OCN Cache DNS Structure

DNS Query Traffic Transition

Number of queries and unique IP addresses per day at 3 random points in 3 different years shown below.

Both number of queries and number of unique IPs increased. However, increase in number of queries much greater than that in number of unique IPs.

⇒ Number of queries by each user increased

What Type of Query?

In particular, increase of A/AAAA is remarkable. (about 1.5 times compared with 2009/11)

Transition for Query for Each IP

■ IPs that transmit over 1,000 to 10,000 queries per day specifically grew as shown.

Query Increase Analysis

Cause of Increase of Heavy Users

- Number of heavy users in Mar. 2010 increased compared with number in Feb. 2009
- What is cause of increase?
 - DNS prefetch function was implemented in Firefox in June 2009
 - Found that number of Firefox users as heavy users increased
 - Suspect that DNS prefetch function caused increase in number of heavy users
- Validate our hypothesis
 - Compare number of queries sent by Firefox users in Mar. 2010 with that in Feb. 2009

Extract Firefox Users

 Find hosts that resolve domain names of Firefox or addons update server

– "aus2.mozilla.org" or "addons.update.mozilla.org"

- Assume found hosts are Firefox users
 - Firefox users may resolve above domain names

resolving "aus2.mozilla.org" or "addons.update.mozilla.org"

DNS cache server

Note: We cannot extract all Firefox users. In addition, we may extract users that do not use Firefox.

Number of Firefox Users in Heavy Users

- Inspected number of Firefox users in heavy users
 - Find heavy hosts that send more than 100 queries in one second
 - Extract Firefox hosts in heavy users as heavy Firefox users
 - Compare number of hosts in Mar. 2010 with Feb. 2009
- Comparison Results
 - Heavy users have increased by 4 times in a year
 - Heavy Firefox users have increased by 28 times in a year

	Feb 2009	Mar 2010
#Heavy Firefox users	0.02	0.55
#Heavy users	1	4

Number of Queries Sent by Top Query Rate Firefox Users

Number of Queries per Second Sent by Firefox Users

Firefox users sorted in descending order of max # queries/sec

Discussion

- Number of queries sent by Firefox users increased after DNS prefetch function was implemented
 - Feb. 2009: Max number of queries was about 150
 - Mar. 2010: Max number of queries was about 350
 - DNS prefetch function may have caused increase in heavy users
- Difficult to distinguish whether queries sent by heavy users are bogus or not
 - So far, queries sent by heavy users have almost all been bogus

- If query rate is limited by stateful firewall, queries sent by Firefox users may be blocked
- NAT box state table may be full
- If DNS prefetch function is implemented in Internet Explorer, DNS cache server load may increase
- Our suggestion
 - Require decreasing prefetch query rate of vendors

Topic of near future

Influence of DNSSEC

May 2009: We started a joint experiment with JPRS. (JPRS manages .jp ccTLD)

- 1. Investigated cache DNS server procedure in order to support DNSSEC.
- 2. Investigated impact of load that DNSSEC gave to a cache DNS server.

Results of experiment (CPU)

CPU Usage: No big change

Results of experiment (Memory)

Memory Usage: About a 2 times increase

Summary of DNSSEC experiment

1. Data size accumulated in cache increases

- Increase of memory usage occurs in particular
- Bands of network also increase
- 2. Necessary to ensure high precision data by several experiments
- 3. Necessary to consider impact in network devices (load balancer, firewall, etc.)