
DNSSEC Key Algorithm Rollover

CZ.NIC z.s.p.o. Ondřej Surý *ondrej.sury@nic.cz* 14. 10. 2010

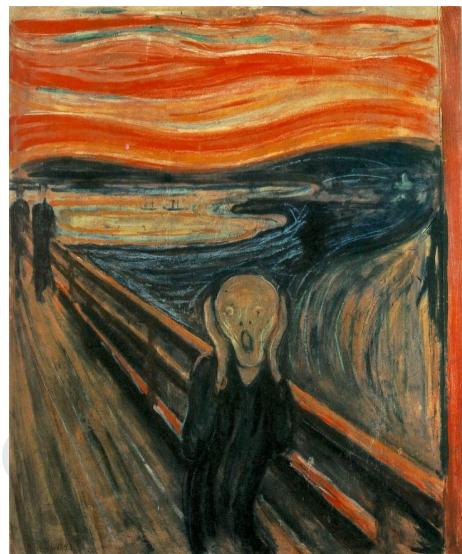
DNSSEC Key Algorithm Rollover

- Exchange the keys and their algorithm
- RFC4641bis 4.1.5
 - Draft (-04)
- 5 step process
 - Timing needed
 - Parent-child interaction

Key rollover in the detail

- 1) Add new RRSIGs (and wait for TTL time)
- 2) Add new DNSKEY(s) (and wait...)
- 3) Exchange DS records (and wait...)
- 4) Remove old DNSKEY(s) (and wait...)
- 5) Remove old RRSIGs (and wait...)
- 6) Switch from NSEC to NSEC3 (done)

Reasons for rollover


- "Political"
 - Prevent zone walking
 - Zone + whois data
 - "Privacy" breach
- Administrative
 - Root zone signed
 - Align with root zone algorithm
 - Push resolvers to use root zone key

• Technical

- SHA1 (almost) deprecated
 - Known crypto attacks
 - Although DNSSEC should be fine
- SHA2 recommended
- Test the process of the rollover

Our experience

- Testing environment
 - Replicated .CZ setup
 - Fake authoritative servers
 - Resolvers to test
 - Theory != Praxis :)
 - Not perfect
 - But improved during the testing

Problems, pitfalls and bugs

The pitfalls and traps (1)

- 1) Add new RRSIGs (and wait for TTL time)
- Problem
 - RRSIGs size double
 - Zone size grows (again)
- Resolution
 - Just throw in more memory

The pitfalls and traps (1)

- 1) Add new RRSIGs (and wait for TTL time)
- 2) Add new DNSKEY(s) (and wait...)
- Problem
 - RFC 4035 Section 2.2

There MUST be an RRSIG for each RRset using at least one DNSKEY of each algorithm in the zone apex DNSKEY Rrset.

- Results
 - Bind 9 works (more tolerant, but not compliant)
 - Unbound returns BOGUS (compliant)

The pitfalls and traps (2)

- 3) Exchange DS records (and wait...)
- Problem
 - RFC 4035 Section 2.2

The apex DNSKEY RRset itself MUST be signed by each algorithm appearing in the DS RRset located at the delegating parent (if any).

- Results
 - Not tested yet, but I would be careful :)

The pitfalls and traps (3)

4) Remove old DNSKEY(s) (and wait...)

• Problem

- Bind Bug #22309
 - RSASHA1 \rightarrow SHA256
 - SHA256 \rightarrow SHA512
- Remove the "old" key
 - Bind returns INSECURE (no AD bit)
- Result
 - Insecure secured domains for a short period of time
 - Replicated in the lab, awaiting solution from ISC¹⁰

The pitfalls and traps (4)

- 5) Remove old RRSIGs (and wait...)
- 6) Switch from NSEC to NSEC3 (done)
- Problem
 - No (known) problems here

Lessons learnt

- Test before you do anything
- Then test again :)
- Implementations differ
 - Test with different implementations and version
- Don't underestimate planning
 - Precise timing is needed
 - If you want to make it painless

Questions?

