

RRSIG: “I certify that this DNS record set is correct”

Problem: how to certify a negative response, i.e. that a record doesn’t exist?

NSEC: “I certify that there are no DNS records (of type X) whose record

name lies between A and B ”

Problem: NSEC records enable zones to be enumerated

NSEC3: “I certify that there are no DNS records (of type X) whose record

name hash lies between A’ and B’ ”

Authoritative Server

• New record R

• Compute hash of R

(call this R’)

• Insert into pre-

sorted list of record

name hashes (say Q’,

R’, S’)

• Sign new NSEC3

records for intervals

(Q’, R’) and (R’, S’)

• Delete old NSEC3

record for interval

(Q’, S’)

Authoritative Server

• Query Q received, no

match found

• Compute hash of Q

(call this Q’)

• Find range (R’, S’)

containing Q’ in

sorted list of pre-

computed NSEC3

records

• Return NSEC3 for (R’,

S’)

Validating Server

• Query record Q,

receive negative

response + NSEC3

for interval (R’, S’)

• Compute hash of Q

(call this Q’)

• Verify Q’ lies in

interval (R’, S’)

• Verify authenticity of

(R’, S’) in usual way—

signature checks, etc

Attacker

• Make random

queries to build a

database of NSEC3

records

• Brute-force search

for records whose

hashes match the

endpoints in the

NSEC3

• Search space for

DNS is typically

small

A cryptographic (one-way) hash is used, so record names cannot be computed directly

from hashes. This hash is iterated to increase the computational load for an attacker.

However (from RFC5155):

More iterations result in greater resiliency of the hash value against dictionary attacks,

but at a higher computational cost for both the server and resolver…[it] affects the zone

owner's cost of signing and serving the zone as well as the validator's cost of verifying

responses…a high number of iterations also introduces an additional denial-of-service

opportunity against servers

Current mitigation: Iterations are limited by RFC5155 to have similar computational cost of

verifying the signature on the NSEC3 RR (e.g. max 500 SHA1 iterations for a 2048-bit RSA

signature)

This presentation proposes an alternative approach (patent pending)

Set up

• Pick 2 large primes, p and q

• Compute N = pq

• Pick public key e

• Compute private key d such that ed =1 mod (p-1)(q-1)

Encrypt: message M, cryptogram C = M
e

mod N

Decrypt: cryptogram C, message M = C
d

mod N

Sign: message (hash) H, signature S = H
d

mod N

Verify: signature S, message hash H = S
e

mod N

Clifford C. Cocks, 1973

http://www.cesg.gov.uk/publications/Documents/nonsecret_encryption.pdf

Fixed effort for private key holder, arbitrarily large effort for public key holders

Set up

• Pick p, q, N as per RSA algorithm

• Choose iterations t

• Compute private key d = 2
t
mod (p-1)(q-1)

Task: Compute H2t
mod N for given input H

• Public key holders require t mod-N squarings of H (time proportional to t)

• Private key holders have short-cut: H2t
mod N = H

d
mod N (fixed time)

Ron Rivest, 1999

http://people.csail.mit.edu/rivest/lcs35-puzzle-description.txt

Create a hash based on a time-lock puzzle:

• Public hash parameters t, N; private parameters p, q, d

• Hash input M

• Compute conventional hash H of M

• Compute H’ = H2t
mod N (or H’ = H

d
mod N if you have the private key)

• Truncate H’ to desired length (or apply conventional hash again)

Set up:

• Choose hash parameters p, q, t

• Compute N and d

• Publish N and t (e.g. as a new variant of a DNSKEY record)

Use private key d to compute H’ when creating NSEC3 records

• No increase in effort over today’s NSEC3 records (based on iterated hash

equivalent to verifying an RSA signature)

• No increase in NSEC3 record size

• Attacker’s task can be made arbitrarily difficult by increasing the value of t

Problem: Increasing t also increases computational burden on validating

servers

Possible solutions:

• Restrict t. We still have a potential gain for the authoritative server

• Rate-limit NSEC3 validations

• Off-load hash computation to the Client

• Requires additional logic in ‘stub’ resolver, but not necessarily full

DNSSEC validation

• Could be done selectively as part of a rate-limiting scheme

