
DNSSEC live signing at scale
Filippo Valsorda

Why CloudFlare needs live signing
• Lots (lots!) of small, light traffic zones

• Heavily distributed network (34 data centers)

• Dynamically generated records

• Zone walking protection

2

Why CloudFlare needs live signing
• Lots (lots!) of small, light traffic zones

It would be a waste to sign all the records for all the
zones over and over again when each datacenter only
gets asked a fraction.

3

Why CloudFlare needs live signing
• Lots (lots!) of small, light traffic zones

• Heavily distributed network (34 data centers)

We would have to continuously distribute huge amounts
of RRSIG data to the edges, or sign everything
everywhere.

4

Why CloudFlare needs live signing
• Lots (lots!) of small, light traffic zones

• Heavily distributed network (34 data centers)

• Dynamically generated records

CloudFlare generates dynamic records all the time,
which can’t be predicted and signed offline!  
(think attacks rerouting, geolocation based answers)

5

Why CloudFlare needs live signing
• Lots (lots!) of small, light traffic zones

• Heavily distributed network (34 data centers)

• Dynamically generated records

• Zone walking protection

NSEC3 does not provide any actual confidentiality.
NSEC5 is not here yet.

6

Issues with live signing
• Speed!

• Negative answers

• Key management

7

Constraints
Keep size small, and don’t require full zonefiles

Our solutions!

8

CloudFlare’s DNS(SEC) overview
• RRDNS is our in-house DNS server written in Go

• Resilient against attacks and abuse

• No zonefiles, records are pulled from a global
distributed database

• Full featured (dynamic answers, CNAME flattening, …)

• DNSSEC is just a “filter” applied to the answer

9

Solving speed (and size): ECDSA P256
• ECDSA P256 signatures are > 3x faster than RSA1024

Measured on OpenSSL 1.0.2 on our servers

• We (Vlad Krasnov) ported OpenSSL ASM to Go
21X speedup for the sign: https://go-review.googlesource.com/#/c/8968/

• Bonus: small signatures, small keys, modern crypto!

• Supported by most validators, working on registrars

10

Standard Go crypto:
BenchmarkSingleSignECDSA 832295 ns/op
BenchmarkSingleSignRSA 6003261 ns/op

Go with Vlad’s changes:
BenchmarkSingleSignECDSA 60806 ns/op
BenchmarkSingleSignRSA 3124274 ns/op

https://blog.cloudflare.com/go-crypto-bridging-the-performance-gap/

Solving speed (and size): ECDSA P256

11

https://blog.cloudflare.com/go-crypto-bridging-the-performance-gap/

Solving speed (and size): ECDSA P256

12

RSA: 
1181 BYTES

ECDSA:  
305 BYTES

Solving negatives: “Black Lies”
• To answer a NXDOMAIN normally we need:

• Database lookups for previous and next name

• 2 or 3 signatures (NSEC/NSEC3) - slow and big!

• Previous and next name disclosure

13

Solving negatives: “Black Lies”

14

Solving negatives: “Black Lies”
• RFC 4470 introduces “white lies” for online signing:

• Generate a NSEC on the name’s immediate
predecessor, covering up to the successor (RFC4471)

• Same with the wildcard

• Solves: zone walking, database lookups

• Still, 2 signatures to say one thing :(

15

Solving negatives: “Black Lies”

16

fon\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255.example.com 3600 IN NSEC \000.foo.example.com (NSEC RRSIG)

\)\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255\255\255\255\255\255\255\255\255\255\255\255\255\255
\255\255.example.com 3600 IN NSEC \000.*.example.com (NSEC RRSIG)

Solving negatives: “Black Lies”
• Our solution: true lies. Just sign a NOERROR.

17

Solving negatives: “Black Lies”
• Our solution: true lies. Just sign a NOERROR.

• Place a NSEC on the name, cover until the successor,
set only the NSEC and RRSIG bits

18

Solving negatives: “Black Lies”

19

Solving negatives: “Black Lies”

• 1 signature op, no db lookup or zone walking

• The entire answer fits 512 bytes (actually, < 400!)

• End-user behavior is unchanged

20

Solving negatives: “Black Lies”

• We suggest to signal the difference between a
NXDOMAIN and a empty non-terminal with a special
RRType in the NSEC bitmap

https://datatracker.ietf.org/doc/draft-ogud-fake-nxdomain-type/

21

https://datatracker.ietf.org/doc/draft-ogud-fake-nxdomain-type/

Solving negatives: the “NSEC shotgun”
• But. To answer a missing type on an existing name, we

still need to query the database for the NSEC bitmap

• That’s not even always possible! (Dynamic answers)

22

filippo.io. 3600 IN NSEC \003.filippo.io.
A NS SOA MX TXT AAAA RRSIG NSEC DNSKEY  

Solving negatives: the “NSEC shotgun”
• Step back: what is a NSEC? A denial of existence.

• “The types not in the bitmap don’t exist”

• So, let’s make a “minimally covering” one. 
By setting all possible bits in the bitmap!

23

filippo.io. 3600 IN NSEC \003.filippo.io.
A NS SOA WKS HINFO MX TXT AAAA LOC SRV CERT SSHFP
IPSECKEY RRSIG NSEC DNSKEY TLSA HIP OPENPGPKEY SPF

Solving negatives: the “NSEC shotgun”
• Asked for TXT and there’s no TXT? Set all the other bits

that might exist.

• The NSEC is a valid denial for TXT, and is useless for
an attacker that wants to replay it for other queries.

24

filippo.io. 3600 IN NSEC \003.filippo.io.
A NS SOA WKS HINFO MX TXT AAAA LOC SRV CERT SSHFP
IPSECKEY RRSIG NSEC DNSKEY TLSA HIP OPENPGPKEY SPF

Solving negatives: the “NSEC shotgun”
• Asked for TXT and there’s no TXT? Set all the other bits

that might exist.

• No useless database lookups! Actually, no need to see
the database from the signer at all.

25

filippo.io. 3600 IN NSEC \003.filippo.io.
A NS SOA WKS HINFO MX TXT AAAA LOC SRV CERT SSHFP
IPSECKEY RRSIG NSEC DNSKEY TLSA HIP OPENPGPKEY SPF

Solving keys: centralized DNSKEY sets
• It’s live-signing, you need the ZSK at the edge (for now)

• Protect the KSK: keep it in a safe central auditable
machine, distribute the signed DNSKEY sets to edges

• Short regular RRSIG validity, longer for DNSKEY

• Prepared to roll the ZSK fast at any time

26

Solving keys: global ZSK and KSK
• No reason to have millions of ZSKs and KSKs: 

all would be used/stored/rolled together

• Use a single KSK and a single ZSK with multiple names
filippo.io. 3600 IN DNSKEY 256 3 13
koPbw9wmYZ7ggcjnQ6ayHyhHaDNMYELKTqT+qRGrZpWSccr/lBcrm10Z
1PuQHB3Azhii+sb0PYFkH1ruxLhe5g==

cloudflare-dnssec-auth.com. 3600 IN DNSKEY 256 3 13
koPbw9wmYZ7ggcjnQ6ayHyhHaDNMYELKTqT+qRGrZpWSccr/lBcrm10Z
1PuQHB3Azhii+sb0PYFkH1ruxLhe5g==

27

Questions?

28

Filippo Valsorda
filippo@cloudflare.com

