
The story of dnsdist
- or -

“Do we need a DNS Delivery Controller”?

http://dnsdist.org/

http://dnsdist.org/

PowerDNS
• Very briefly so you know where we come from

• Open source nameserver, around since 2000, open source since
2002, high-end commercial support since 2006, part of Open-
Xchange (together with Dovecot IMAP) since 2015

• Authoritative serving from text files, databases, JSON/RESTful
interfaces, pipe-scripts, Lua scripts, geographical load balancing
etc. Biggest host & signer of DNSSEC domains

• Recursor: strives to be a no-worry, high-performance, robust
resolver

• Lots of interesting tooling (dnsreplay, dnsdist, dnsscope, calidns…)

The story of dnsdist
• Started out as a need to do “dnsdist listen-ip destip-1 destip-2”

• Simple query spreading w/o hassle, also just forwarding

• Been around for a year or two

• When debugging with a large customer, we found they were willing
& able to switch out PowerDNS versions at the drop of a hat since
they were comfortable with their loadbalancer

• Asked around, no one else was happy with their DNS load
balancer solution

• Open question: does the world new a ‘DNS Delivery
Controller’?

dnsdist: a smart “DNS
Delivery Controller”

• Runtime configurable from console (accessible remotely,
tab-completing interface)

• Console & configuration file actually Lua

• Host of built-in load balancing/blocking/shunting/shaping
policies (C++), custom policies can be written in Lua
(plenty fast)

• Provides features ranging from simple round robin load
balancing to quarantining of infected customers

• Vendor-neutral open source - please join in!

Existing load balancers
• Most (HW) load balancers know about http, https, imap etc.

• DNS is sufficiently different that it is hard to treat it as ‘a weird
kind of web’, so many vendors mess it up

• Plus the quaint observation that a busy nameserver is a happy
name server

• Caches HOT!

• Leads to need for a ‘concentrating load balancer’: as much
traffic on as little servers as possible

• Exactly the reverse of http etc

Some tests
• With various companies we tested shutting down all their nameservers but

a few, leading to lots of traffic going to one server

• In all cases, we observed lower query/response latencies and far lower
cache miss rates (±50% lower)

• Happier customers

• We also observed only minor increases in CPU load, very much sub-linear
to the many-fold traffic increase

• One name server doing millions of cable modems

• One name server doing 700k domains with online signing

• “We have a winner!”

dnsdist implementation
• Various load balancing policies

• Roundrobin, hashed, weighted random, least outstanding, “first available”

• Implementation:

newServer {address="2001:4860:4860::8888", qps=1}

newServer {address="2001:4860:4860::8844", qps=1}

newServer {address="2620:0:ccc::2", qps=10}

newServer {address="2620:0:ccd::2", qps=10}

newServer("192.168.1.2")

setServerPolicy(firstAvailable) -- first server within its QPS limit

Server1 Server2 Server3 Server4 Server5 Server4 Server5

Main resolver pool DNSSEC
resolver pool Abuse pool

30
kqps

30
kqps

20
kqps

DNSDIST

Policy = firstAvailable
If trouble domain or trouble source -> abuse pool
If any hint of DNSSEC query -> DNSSEC pool
Otherwise main pool, first server that has not hit
qps limit

If all servers hit limit, round robin

Second use case
• DoS attacks of the algorithmic kind - don’t kill you

with bandwidth, do cause outgoing traffic that
does, do cause degraded performance

• Frequently blocked with complicated iptables rules,
or deployed custom zones within name servers

• Option in dnsdist: move senders of harmful DNS
traffic to dedicated servers

• Where they only ‘soil their own nest’

Other things we added
• Moving traffic to different server pools, dropping it, shaping it,

based on:

• Header bits, DNSSEC flags

• Domain names

• Regular expressions

• Source address

• Generating TC=1 responses based on all of the above

• Generating custom answers from Lua to silence specific clients

Other things we added
• Live statistics built-in webserver with moving

graphs (‘up to the second’)

• Live traffic inspection: Top-N queries, top-N clients,
top-N servfail generating queries, top-N servfail
generating domains & clients

• Latency distribution histogram

• A substantial Lua runtime which should facilitate
‘everything’ for those that need flexibility

First use-cases
• TC=1 redirection for a huge nameserver installation that does not support that

• Symptom: frontend can be more flexible than backend, because far away
from business logic

• “DNSSEC only for people that want it”

• Symptom: fear DNSSEC will somehow ‘infect’ rest of service

• Latency graphs for backends that don’t support it

• Symptom: hard to measure from name server itself

• Solve the “undisconnectable nuisance customer” problem

• Symptom: subscribers are hacked, little we can do about it

Discussion: do we need
this?

• A pure load balancer knows nothing of DNS and can
be very fast (‘lob packets’)

• A nameserver is fully featured and can also do load
balancing itself (‘forwarders’)

• Is there room or need for something in between?

• People tell us ‘yes’, but are they right?

• Or will we end up ‘making another nameserver in
front of your nameserver’?

The story of dnsdist
or

“Do we need a DNS Delivery
Controller”?

http://dnsdist.org/

http://dnsdist.org/

