
Idea: DNS over QUIC

zone transfer over QUIC or

TLS/TCP

Kazunori Fujiwara, JPRS

<fujiwara@jprs.co.jp>

DNS-OARC 2015 Fall Workshop

Last Update: 2015/10/02 0453 (UTC)
Copyright © 2015 Japan Registry Services Co., Ltd. 1

My expectations for QUIC

• I listened QUIC presentations at IETF-93

BarBoF

• TCP is weak to the man-in-the-middle attack

• Anyone can terminate TCP connections by

sending TCP RESET packet

– Interrupting zone transfer is easy

• QUIC may solve the problem

• Then, I submitted my abstract to this

workshop
Copyright © 2015 Japan Registry Services Co., Ltd. 2

Submitted abstract

• The presentation discusses just an idea
about DNS over QUIC and zone transfer over
QUIC or TLS/TCP.

– The third transport of DNS may be QUIC.

– Both DNS and QUIC use UDP and port 53/UDP
may be possible to share.

– (If possible, implementation status will be
reported, but it seems hard.)
→QUIC is complicated and I couldn’t implement

– And zone transfers may be performed over QUIC
or TLS/TCP transport with server certificate
authentication.

Copyright © 2015 Japan Registry Services Co., Ltd. 3

QUIC (Quick UDP Internet Connection)
A UDP-Based Secure and Reliable Transport for HTTP/2

• Developed by Google and chromium.org

• Specs

– draft-tsvwg-quic-protocol-01

– draft-tsvwg-quic-loss-recovery-00

– [QUIC-CRYPTO] http://goo.gl/jOvOQ5

– Currently, not well-defined and many

undescribed parts

– Need to refer current code (at chromium.org)

Copyright © 2015 Japan Registry Services Co., Ltd. 4

QUIC: Characteristics

• QUIC=TCP+TLS(+HTTP2) functions on UDP

– Does not require any changes in OS and network

– Implemented as a library, userland only

• 1 QUIC session can handle multiple streams

– Each stream frame can be immediately
dispatched to that stream on arrival

• Any controls and messages are
authenticated (and/or encrypted)

• Large connection ID (0,8,32,64 bits)

• Large sequence number (64 bits)

– it may be used as a cryptographic nonce

Copyright © 2015 Japan Registry Services Co., Ltd. 5

Use cases of DNS over QUIC

• IETF dprive WG

– DNS over QUIC is equivalent to DNS over

TLS/DTLS

• Zone transfer over QUIC or TLS

Copyright © 2015 Japan Registry Services Co., Ltd. 6

Zone transfer over QUIC or TLS

• Zone transfer is not encrypted

• Zone transfer over TLS may be required to
protect zone contents from man-in-the-middle
attacks

• ACL may be changed to check certificates or
their common names

Server:

certificate: “something.pem”

Zone:

name: “example.org”

request-xfer: 192.0.2.1 TSIGKEY CommonName

provide-xfer: 192.0.2.2 TSIGKEY CommonName

Copyright © 2015 Japan Registry Services Co., Ltd. 7

After reading QUIC specs

Section 5.5 of draft-tsvwg-quic-protocol-01

• “Caveat: PUBLIC_RESET packets that

reset a connection are currently not

authenticated.”

– Attacker can generate PUBLIC_RESET packet

– My expectation was disappointed

– (it will be fixed, I believe)

Copyright © 2015 Japan Registry Services Co., Ltd. 8

QUIC: current implementation

• http://www.chromium.org/quic

– Written by C++

• To build standalone test server and client,

– Requires chromium source tree (about 1.3GB)

– Requires special build system (ninja)

– Limited information

– Limited documentation: need to read the

source code

Copyright © 2015 Japan Registry Services Co., Ltd. 9

QUIC test on FreeBSD 10.1

• I found NEWPORT request for FreeBSD

– [Bug 202286] [NEW PORT] net/libquic-devel

– Tarballs listed by distinfo changed after the request
• fixed “distinfo” file

• Huge tarballs: 372MB distfiles/libquic-devel/

– It works (compile libquic and test server / client)

• Result of building libquic

– Huge library: 138M /usr/local/lib/libquic.so.0

– Many header files: 933 in /usr/local/include/quic

– Normal size binaries
• 1.9MB quic_simple_client

• 3.3MB quic_simple_server

Copyright © 2015 Japan Registry Services Co., Ltd. 10

quic_simple_client

• Smallest compile command for a client
– c++ -I/usr/local/include/quic -fno-rtti -std=gnu++11

quic_simple_client_bin.cc quic_in_memory_cache.cc
quic_simple_client.cc quic_spdy_client_stream.cc
synchronous_host_resolver.cc quic_client_session.cc
quic_spdy_server_stream.cc -L/usr/local/lib -lquic

– Non-installed header files (22) are required
• base/metrics (4) base/posix (1) net/tools/balsa (3)

net/tools/quic (14)

• Main part of the client
– client.Initialize()

– client.Connect()

– client.SendRequestAndWaitForResponse()

• Blocking code may be easy

Copyright © 2015 Japan Registry Services Co., Ltd. 11

quic_simple_server
• Smallest compile command for a server

– c++ -I/usr/local/include/quic -fno-rtti -std=gnu++11 quic_simple_server_bin.cc
quic_simple_server.cc quic_server_session.cc quic_in_memory_cache.cc
quic_spdy_server_stream.cc quic_simple_per_connection_packet_writer.cc
quic_simple_server_packet_writer.cc quic_per_connection_packet_writer.cc
quic_time_wait_list_manager.cc quic_dispatcher.cc -L/usr/local/lib –lquic

• Main part of the server
– net::tools::QuicSimpleServer server()

– server.Listen()

– base::RunLoop().Run();

• Main loop may be in QUIC library
– Similar to Boost::asio and libevent

– Need to integrate QUIC + DNS server

– Need C++ DNS server implementations
(Bundy or PowerDNS ?)

Copyright © 2015 Japan Registry Services Co., Ltd. 12

Port 53/UDP problem

• Port 53/UDP may be shared with both

DNS over UDP and DNS over QUIC

• Assumption

– Ignore address/port change in QUIC

• Client knows the response packet type

– The response packet type should be known

• Servers need to accept both DNS/UDP

and QUIC (and DNS/TCP)

– Need to determine that received packet is

DNS or QUIC at UDP query receiver
Copyright © 2015 Japan Registry Services Co., Ltd. 13

How to determine DNS or QUIC

• Basic idea
– Parse it as DNS/UDP or QUIC. If errors occur, it’s

another protocol packet

– If QUIC connection established, record the
combination of (source/destination address/port)

• Proposed idea
– If (source/destination address/port combination is

established QUIC session) then it is QUIC

– If the packet does not seem to be DNS/UDP, try
QUIC (heuristic)

• QR=0, QDCOUNT=1, higher byte of *COUNT=0

– Parse received packet as DNS/UDP

– If it parsed as a FORMERR, it is QUIC packet

Copyright © 2015 Japan Registry Services Co., Ltd. 14

Pseudo server code
Initialize

Create UDP/TCP socket;

Event loop (Boost::ASIO, libevent, select, etc.) {

if (packet received) {

recvfrom();

if (established QUIC ?) { do QUIC; }

else if (heuristic check !DNS ?) { do QUIC; }

else {

Parse received packet as DNS/UDP;

If (FORMERR) {

do QUIC;

if (QUIC error) { response FORMERR; }

}

}

}

Do other works (timer, responder, …)

}
Copyright © 2015 Japan Registry Services Co., Ltd. 15

Current status

• The current QUIC specification is
unsatisfactory and incomplete

• Implementation exists, but too complicated

– Do you know simpler QUIC implementation
written by C ?

• If possible, I would like to integrate DNS
server (written by C++) and libquic

• Questions ?

Copyright © 2015 Japan Registry Services Co., Ltd. 16

