Happy Eyeballs for the
DNS

Recap: "Happy Eyeballs"™

Plan A:

If you are Dual Stack and the service you are attempting to
connect to is Dual Stack then try to connect using V6 first,
and if the connection attempt fails then try using V4

Which “naturally” propels the V6 transition — as more clients and
services support Dual Stack then more transactions will shift to
use V6

Recap: "Happy Eyeballs"™

But Connection Failure took forever:

Windows: 21 seconds
BSD: 75 seconds
Linux: 189 seconds

So what we wanted in the Web was a “fast fail” to keep the
eyeballs on the content

Recap: "Happy Eyeballs"™

Plan B:

If you are Dual Stack and the service you are attempting to
connect to is Dual Stack then try to connect using both
protocols, but give V6 a (small) head start

The V6 SYN is typically given a head start of 300ms over the V4
SYN, and the first protocol to complete the TCP handshake is
used for the ensuing session

Happy DNSballs?

00003 .y.dotnxdomain.net. IN NS ns1.00003.y.dotnxdomain.net.
nsl1.00003.y.dotnxdomain.net. IN A 162.223.8.90
IN AAAA 2607:£c50:1001:9500::2

This zone is served by an authoritative name server that has both a V4 and a V6
address

« How should a “Happy Eyeballs” DNS resolver behave?

« How do resolvers behave today?

Fast Failover in the DNS?

Plan A:
Wait for timeout?

Resolver timeout / retry algorithm is specific to the
DNS resolver implementation:

RFC1034:

“Send them queries until one returns a response.”

Fraction of Repeat Queries (%)

Observed DNS Resolver Re-
Query Times

Distribution of Repeat DNS Query Delay

0.37 Second Retry
0.8 Second Retry
1 Second Retry

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Time Since Initial Query (seconds)

Fast Failover in the DNS?

If the DNS were to behave like the Web:
— assemble a sorted list of V4 and V6 addresses
— launch a query to the “best” V6 server

— wait for <small time>
— launch a query t&e “best” V4 server QTT Sor dne avery

But this is not what typically happens today.

What does happen?

Measuring DNS Resolver
Behaviour

Agside: Understanding DNS
Resolvers is "tricky"

What we would like Yo dwwnk waggens w DN resolution!

X t ?
. nz . *‘ ‘z ¢
7 D 7

Auvinortative
L C \iend DNS Resolver Naweserver

22 10001 7 %y2? 10001

Aside: Understanding DNS
Resolvers is "tricky"

LC\\Q(\T\) DNS ‘leso\ve ﬁ Servcr/)

a2l
D’\ﬁ

09— =1

/ 1)

c |/ 2. PR
KSOVC(‘

A swall sample of wwat appears o wagpen w DN resalution

Aside: Understanding DNS
Resolvers is "tricky"

We can weasure Yne We can weasure dwe
DNS resolution of ; ~ behWaviour of dwese
Hnese clients DNS | resolvers
e mmmmmmmT - VLQSO\vcr
€ Al dvis DNS
| resolver

—wlrasteucture \ Q\DN\S
ceso\ver
C’ IR OQO\QUC
Decver

g e

Resolver

Twe best wodel we can use for DN resolution w dwese experimends

Aside: Understanding DNS
Resolvers is "tricky"

We _can wicasure 4he We can weasure dwe
DNS resolution of behaviour of Ywes -

Iese clients | e .
b O | reselve R
Al dnis DNS

cesolue-

\}\Qj\DQ ir\ ---------------- A SQ"“Q"/)

DNS

Resolver

Twe best wodel we can use for DN resolution w dwese experimends

Glueless Delegation

Glueless Delegation

Servers (;'DNS) Attack _—
\’wj Reminders about Delegations Inner-working

Florian Maury, ANSSI

 /£7

May 10, 2015

Glueless delegation example
;; AUTHORITY SECTION

france.fr. IN NS ns2.produhost.net.
france.fr. IN NS ns33.produhost.net.

Glued delegation example

;5 AUTHORITY SECTION

ssi.gouv.fr. IN NS dnsl.certa.ssi.gouv.fr.
ssi.gouv.fr. IN NS dnsl.ssi.gouv.fr.

;; ADDITIONAL SECTION

dnsl.ssi.gouv.fr. IN A 213.56.166.96
dnsl.certa.ssi.gouv.fr. IN A 213.56.176.3

DNS OARC 2015 Spring Workshop

P ol
nso W N N &N \
---‘/

\0.0.0.\

2. eyawie, o _
o w A w20t fg—
i
/)
> M«-(M
R 6 Twe resolver can o«x\y ask
o W A 000\ question D \{ W recewes answer 2

Glueless Delegation

We can change the behaviour of the DNS response to the NS
domain query

And we observe that the resolver has received the response
by the subsequent query to the child domain

Testing V6 Preference in
the DNS

We set up three domain structures:
Glueless V4 only - NS name has only an A RR
Glueless V6 only — NS name has only a AAAA RR
Glueless Dual Stack — NA name has both A and AAAA RRs

And tested this in an online Ad campaign using a pool of
unique names to circumvent DNS name caching in resolvers

The Experiment

25 July 2015 - 31 August 2015
43,679,222 completed experiments

Web results:
DNS V4 Only 42,515,729 97%
DNS V6 Only 16,605,301 38%
DNS Dual Stack 41,653,531 95%

38% of tests involved using DNS resolvers that were able to perform DNS
queries over IPv6

The Experiment

25 July 2015 - 31 August 2015
43,679,222 completed experiments

Web results:
DNS V4 Only 42,515,729 97%
DNS V6 Only 16,605,301/ 38%)
DNS Dual Stack ,653,531 95%

38% of tests involved using DNS r=~) X0
queries over IPv6 cc%QQC aoxet

S
(‘0 Qu
“ XCQ\ C QQ
C o\) QCQ
o WeTE e e N C N\
S C ceso € 3‘\“@: 9CE
So © setNE| Ty SXC
{\O‘\I‘A D\) Q CQ)‘O‘ ‘

onxe

DNS Query Behaviours per
Experiment

Experiment bsery D > T O emendy
Behaviour Total " ad g 2\5\,3: Ty
V4 only 38,104,161\j\

V6 only 15,116

V4 and V6 29,546,165

Yes, that’s a total of 67,665,443 experiments in the DNS, while only
43,679, 222 completed the web fetch cycle (64% completion rate)

DNS Query Behaviours per

Experiment
Experiment
Behaviour Total
V4 only 38,104,161
V6 only 15,116

V4 and V6 29,546,165

Dual Stack DNS object fetch behaviour

Exclusively used V4: 24,257,143 82%
Exclusively used V6: 1,982,312 7%
Used V4 and v6: 3,193,945 11%

DNS Queries

Resource v4 Queries vé Queries
4-only 110,265,765 0
6-only 0 61,601,964
Dual-stack 101,897,693 7,346,050

A ond AAAA

N':J Queries Cor
’VY“I\Q\ s(;\é\:\boi\r ‘\c\fe E\)‘\\on“«\w\\ve secver A oC
S

T\nc DNS noawae

DNS Queries

Resource v4 Queries vé Queries
4-only 110,265,765 0
6-only 0 61,601,964
Dual-stack 101,897,693 < 7,346,050

com twe Web cesulds e were

A=

w a dlueless
vrce.

vol Shack resovd
2*96(3{«\3 comening closer Yo

DNS Resolvers

Let’s switch from the queries make by resolvers to the visible
resolvers themselves

Resolvers seen:

IPv4-Only Resolvers:
IPv6-Only Resolvers:
Dual Stack Resolvers:

Aside: Identifying DNS
Dual Stack Resolvers

Identifying a resolver as a dual stack resolver involves some
assumptions, as the logged queries do not implicitly reveal that a V4
and a V6 address are actually addresses of the same resolver:

— If a test query set involved a single V4 and single V6 address then I tentatively

“join them” to a single resolver o
— 6-to-4 addresses are “joined” to each other o
— Loops are preferred @

— If a v4 address is “joined” to multiple V6 addresses in this way (or vv) then I
undo the join except in those cases where the V4 and V6 addresses share a
common final octet/nibble

2 B

a.b.c.15 d::15 e.f.g.20

DNS resolvers

Let’s switch from the queries make by resolvers to the visible
resolvers themselves

Resolvers seen: 464,950

IPv4-Only Resolvers: 446,173 (96%)
IPv6-Only Resolvers*: 11,377 (2%)
Dual Stack Resolvers: 7,040 (2%)

* Could not uniquely associate the IPv6 address with a single IPv4 address

DNS Dual Stack Resolvers

282 dual stack resolvers use 6-to-4 for their IPv6 connections

— None of these resolvers prefer IPv6 when querying a dual
stack auth server

4 dual stack resolvers used Teredo (!)
— They made a mix of V4 and V6 queries (63% v4)

6,759 dual stack resolvers used non-mapped V6 addresses
— 58% of queries using V4, 42% using V6

DNS Dual Stack resolvers

Lets look the queries made by the visible dual stack
resolvers:

Dual Stack Resolvers: 7,290

Always Prefer 4: 1,074 (15%)
Always Prefer 6: 197 (3%)
Mixed: 6,001 (82%)

Did not query DS name: 18 (0%)

DNS V6 Capable resolvers

V6 Capable Resolvers: 18,421
Did not use V6 for Dual Stack: 5,088 (28%)
Always Preferred V6: 1,458 (8%)

Mixed V6/V4 for Dual Stack: 11,875) (64%)

Of iwe WAYC /

a VL*/ \/6 Sviu 4,
2%)0\,\58%7%& %ve record { orq 5-0“ }/%Cl\gq.de\fe? ' refs olve dne
\dQV\"\ \Q\"S or ‘5‘— ‘ 'ers ol a 4O4Q\

Og\ “\/\Q 4\\/\'\6

Fraction of Queries

DNS Protocol Switch Times

Tlme to Switch Protocols

0

01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29

Time Since First Query (Seconds)

3

% of Ids

100

DNS Protocol Switch Times

Protocol Switch Time

4t06

6to4
| | | | | | | | | | | | | | | | | |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Seconds to Switch

1.9

What Does Google's Public

DNS Do?
Observed V6 resolver addresses for Google PDNS: 566
Observed preference for V6 dual stack: 0

(using glueless delegation)

What does Bind Do?

Can we see Bind?

— Well, as far as I am aware (please correct me) Bind is
the only resolver that will not follow a CNAME in a NS
record

— So lets use that as a working definition for Bind and see
what Bind does

What does Bind 4do?

Experiments using dual stack BIND resolvers:

Asked for Dual Stack using V4: 4,075,246 (52%)
Asked for Dual Stack using V6: 690,566 (17%)
Asked for Dual Stack using V4 and V6: 1,263,312 (31%)

What does Bind 4do?

Number of resolvers: 264,501 of 479,468 (55%)

(These are the resolvers who do not follow a CNAME RR)

Compare V4 only to V4 Dual Stack
Used IPv4 to query a dual stack resource: 123,339 / 136,946 (90%)

Compare V6 only to V6 Dual Stack
Used IPv6 to query a dual stack resource: 9,402 / 11,950 (79%)

What does NON-Bind do?

Experiments using dual stack NON-BIND resolvers:

Asked for Dual Stack using V4: 22,135,775 (87%)
Asked for Dual Stack using V6: 1,291,746 (5%)
Asked for Dual Stack using V4 and V6: 1,930,633 (8%)

What does NON-Bind do?

Number of resolvers: 214,967 of 479,468 (45%)
(These are the resolvers who do follow a CNAME RR)

Compare V4 only to V4 Dual Stack
Used IPv4 to query a dual stack resource: 136,039 / 139,834 (98%)

Compare V6 only to V6 Dual Stack
Used IPv6 to query a dual stack resource: 2,554 / 2,693 (94%)

Happy DNS Eyeballs?

Not really.

Only 4% of resolvers appear to be dual stack capable ®
And of those that do, they are not favoring IPv6 over IPv4 ®

And there is not clear evidence of the use of a fast failover
approach from IPv6 to IPv4 ®

Does it matter?

How can you tell when you no longer need to keep running
IPv4 on an authoritative name server?

When there are no longer any queries made using IPv4

But this answer assumes that dual stack resolvers have a
clear preference to use IPv6 first and perform a fast failover to
IPv4

Which is not happening today in the DNS ®

T\I\O\‘\’ S \‘\\

