DNS Big Data Analytics

DNS-OARC Fall 2015 Workshop
October 4th 2015
Maarten Wullink, SIDN

SIDN

- Domain name registry for .nl ccTLD
- > 5,6 million domain names
- 2,45 million domain names secured with DNSSEC
- SIDN Labs is the R&D team of SIDN

DNS Data @SIDN

- > 3.1 million distinct resolvers
- > 1.3 billion query's daily
- > 300 GB of PCAP data daily

ENTRADA

ENhanced Top-Level Domain Resilience through Advanced Data Analysis

- Goal: data-driven improved security & stability of .nl
- **Problem**: Existing solutions for analyzing network data do not work well with large datasets and have limited analytical capabilities.
- Main requirement: high-performance, near real-time data warehouse
- Approach: avoid expensive pcap analysis:
 - Convert pcap data to a performance-optimized format (key)
 - Perform analysis with tools/engines that leverage that

Requirements

- SQL support
- Scalability
- High performance
- Capacity for >1 year of DNS data
- Extensibility
- Stability
- Don't spend too much money!

Query Engine Options

Engines galore!

Evaluated SQL and NoSQL solutions

- Relational SQL (PostgreSQL)
- MongoDB
- Cassandra
- Elasticsearch
- Hadoop (HBASE + Apache Phoenix or Hive)
- SQL on Hadoop (HDFS + Impala + Parquet)

SQL on Hadoop

Best fit for our requirements

HDFS

- Distributed file system for storing large volumes of data
- High availability through replication of data blocks
- Scalable to hundreds of PB's and thousands of servers

HDFS Data Distribution

Impala query engine

- MPP (massively parallel processing)
- Inspired by Google Dremel paper
- Provides low latency and high concurrency for BI/analytic queries on Hadoop
- Excellent performance when compared to other Hadoop based query engines.

Impala (2)

Data formats

- Text
- Hadoop formats
- Apache Avro
- Apache Parquet

Interfaces

- Web-based GUI
- Command line (impala-shell)
- Python (Impyla)
- JDBC

Apache Parquet

- Why not just use the PCAP files?
 - Reading (compressed) PCAP data is just too slow
 - Analytical engines cannot read PCAP files
- Columnar storage format

Apache Parquet (2)

- Columnar storage allows for efficient encoding/compression
 - multiple encoding schemes
 - support for Snappy compression

- Partition data (e.g. by year, month, day and server)
 - Partition pruning allows Impala to skip data we are not interested in
- Other analytical engines such as Apache Spark can use the same Parquet data.

ENTRADA Architecture

- 'DNS big data' system
- Goal: develop applications and services that further enhance the security and stability of .nl, the DNS, and the Internet at large
- ENTRADA main components
 - Applications and services
 - Platform
 - Data sources
 - Privacy framework

ENTRADA Privacy Framework

Download paper: http://goo.gl/GvsfzQ

Policy elements:

- Purpose
- Data that is used
- Filters on the data
- Retention period
- Access to the data
- Type of application (Research vs. Production)

Cluster Design

nano sized

location I management node

location II data nodes

location III data nodes

2Gb/s network

Hardware

Management node

HP ProLiant DL380
Xeon 1.9 GHz 12 core CPU
64GB RAM
3 TB storage

Data node

HP ProLiant DL380
Xeon 1.9 GHz 12 core CPU
64GB RAM
6 TB storage

Scaling

- Vertical by adding more resources
- Horizontal by adding more data nodes

Workflow

Performance

Example query, count # ipv4 queries per day.

```
select
concat_ws('-',day,month,year),
count(1)
from dns.queries
where ipv=4
group by
concat_ws('-',day,month,year)
```


Query response times

1 Year of data is 2.2TB Parquet ~ 52TB of PCAP

ENTRADA Status

Name server feeds	1
Queries per day	~150M
Daily PCAP volume(gzipped)	~33GB
Daily Parquet volume	~6GB
Months operational	18
Total # queries stored	> 71B
Total Parquet volume	> 3TB
HDFS (3x replication)	> 9TB
Cluster capacity	~150B-200B tuples

Use Cases

Focussed on increasing the security and stability of .nl

- Visualize DNS patterns (visualize traffic patterns for phishing domain names)
- Detect botnet infections
- Real-time Phishing detection
- Statistics (stats.sidnlabs.nl)
- Scientific research (collaboration with Dutch Universities)
- Operational support for DNS operators

Example Applications

- DNS security scoreboard
- Resolver reputation

DNS Security Dcoreboard

Goal: Visualize DNS patterns for malicious activity

How: Combine external phishing feeds with DNS data

Architecture

Traffic Visualization

Resolver Reputation (RESREP)

Goal: Try to detect malicious activity by assigning reputation scores to resolvers

How: "fingerprinting" resolver behaviour

RESREP Concept

Malicious activity:

- Spam-runs
- Botnets like Cutwail
- DNS-amplification attacks

RESREP Architecture

Conclusions

Technical:

Hadoop HDFS + Parquet + Impala is a winning combination!

Contributions:

- Research by SIDN Labs and universities
- Identified malicious domain names and botnets
- External data feed to the Abuse Information Exchange
- Insight into DNS query data

Future Work

- Combine data from .nl authoritative name server with scans of the complete .nl zone and ISP data.
- Get data from more name servers and resolvers
- Expand Open Data program

Questions and Feedback

Maarten Wullink
Senior Research Engineer
maarten.wullink@sidn.nl

www.sidnlabs.nl

https://stats.sidnlabs.nl

