A Study of Privacy and
Anonymity in the DNS*

Cesar Ghali, Gene Tsudik, Christopher A. Wood

University of California Irvine
DNS OARC — Dallas 2016

*Support provided by Verisign

Pitiful Privacy in the DNS

* Encryption only protects query contents [1,2,3]

* Side channels are prevalent in the protocol [2]:
— Timing
— Frequency
— Response sizes
— Resolution chains

[1] Bernstein, Daniel J. "DNSCurve: Usable security for DNS." dnscurve. org (2009).

[2] Shulman, Haya. "Pretty bad privacy: Pitfalls of DNS encryption." Proceedings of the
13th Workshop on Privacy in the Electronic Society. ACM, 2014.

[3] DNS-over-HTTPS, Google. https://developers.google.com/speed/public-
dns/docs/dns-over-https

Plugging Privacy Holes

Message padding
Message interleaving
Artificial resolver delays
Query chaffing

But Wait... There’s More

* For privacy, we want to protect the contents
of a query from Adv (resolver or stub)

 What about the sources of the queries?

* Can queries reveal information about the
origin?

Agenda

* DNS privacy mitigations™
— Message padding
— Message interleaving
— Artificial resolver delays
* DNS client anonymity
— Analysis
— Query chaffing countermeasure

*Strategies implemented in an open source DNS resolver

PRIVACY

Adversarial Model

QUERY www.example.com

-

Adversarial Model

QUERY www.example.com

o

Adversarial Model

What’s inside
this query?

Message Padding

* |deal requirements:

— Must fit within UDP packet (or TLS record)

 What if a request or response exceeds the MTU?

— Must not be more than what’s necessary
* What’s the maximum padding length?

EDNS(0) Padding [1]

* Clients and servers can specify padding length
In messages

 Method of padding selection is left
unspecified

[1] https://tools.ietf.org/html/rfc7830

3.5e+06

3e+06

2.5e+06

e+06

[N
Query Coypts

e+06

le+06

300000

Maximum QNAME Size

Query Nane Lengths
Fron Sep 29, 2016, 19:22:51 To Sep 29, 20816, 23:22:51 UTC

A

0 3 10 15 20 25 30 35 40

Nane Length {(bytes)

E00OEEEOCOD .

Other
ANY
A6

SRY
ARAA

MX
PTR
S0A
CNAME
NS

12

Maximum Response Size

100 == : — I I C ud
: . : . egen
E SIETEREY DNSKEY (TLDs)
: —+— NXD signed (TLDs)
8o voo®E L N0 | NXD (TLDs) _
A - S N Bl ANY (TLDs)
A e U ANY signed (TLDs)
—— ANY signed (Alexa)
< 60 [
» ':
c '
= i
g :
] 40 B
200 v E 0 Teg T
n h o L e,
0 5000
2222222 Response Size (bytes)
ﬁ%eﬂ) é%’;ﬂl’lE
1§e+06 E:
g Standard MTU
.1l .

13

20 25
Nane Length (bytes)

Maximum Response Size

100 == : — I I . Id
: ' ; o egen
E JETLIEY DNSKEY (TLDs)
: —+— NXD signed (TLDs)
80+ v o= LN | NXD (TLDs) |
A S A U Attt ANY (TLDs)
A e U ANY signed (TLDs)
: —— ANY signed (Alexa)
X 60
» ':
c '
= ;
g :
] 40 B
20 v F 0 Twyn T
[h 0
0 000
Response Size (bytes)
ﬁ%em EEILRHE
1§e+06 E:
1e+06 .
000000 [N Standard MTU Where’s the end?
o———.J ﬂl~'l.ll-=r--1
° ’ ¥ ’ Nane 2I.oengr.h (Z:Qtes) * * © ® 14

Padding Choices

* |deally: padding is uniform

* Tradeoff: break responses into "sized tiers”
— Size & [1,100] =>Tier 1
— Size & [101,200] => Tier 2

— Size > X =>Tier N

Boundaries

How can tier boundaries be selected such that
privacy is increased while overhead is
decreased?

— Fewer tiers => more privacy, more overhead

— More tiers => less privacy, less overhead

Boundaries

How can tier boundaries be selected such that
privacy is increased while overhead is
decreased?

— Fewer tiers => more privacy, more overhead

— More tiers => less privacy, less overhead

Build tiers dynamically based on
(cumulative) distribution of requests

Padding Tiers

Reply Code Hessage Lengths
Fron Sep 13, 20816, 85:53:37 To Oct 13, 2816, 85:53:37 UTC

4 .5e+06
Rcode 3

Rcode O

4e+06

3.5e+06

3e+06
7]

-
2 §e+os
(]

De+06
Q
-
(o 3

1.5e+06

1e+06

300000

0 — I ‘1[. 1|) T I I R

30 150 250 350 450 550

DNS Hessage Size (bytes) 18

4.5e+06
d4e+06
3.5e+06
3e+06
w

-
2 gie+06
(]

De+06
Q

1.5e+06
1e+06

300000

Padding Tiers

Reply Code Hessage Lengths

Fron Sep 13, 2816, 85:53:37 To Oct 13, 20816, 85:53:37 UTC

250 350
DNS Hessage Size {(bytes)

450

550

Rcode 3
Rcode ©

19

3.59e+06

3e+06

2.9e+06

e+06

=
Query Couypts

e+06

le+06

300000

Padding Tiers

Reply Code Hessage Lengths
Fron Sep 13, 20816, 685:38:0808 To Oct 13, 20816, 85:38:808 UTC

L.

L.

. l[.l. Ll " l.l || 1\
L}

50

150 250

350 450

DNS Hessage Size {(bytes)

550

Rcode 3
Rcode ©

20

Message Interleaving

 Requirements: mask query order by
interleaving messages

— Cannot interleave unless we batch queries

— Want to minimize query delays while maximizing
interleaving

* Approach:
— Batch for RTT* seconds

— Shuffle packets (queries and responses), send in
sequence, repeat

*Average RTT to resolve a single query

Message Interleaving Overview

Resolver
(mixer)

22

Message Interleaving Overview

Resolver
(mixer)

shuffl

23

Message Interleaving Overview

Resolver

(mixer)

24

Message Interleaving Overview

Resolver

(mixer)

25

Message Interleaving Overview

Resolver

(mixer)

Client

26

Query Response Time [s]

1.8

1.6

1.4

=
N

=

o
o0

o
<)

0.4

0.2

N unM~OO A M
—

15
17
19
27
29

21
23
25
31
33
35
37

39
41

43

Results

45

~
<

[))]
<

i
N

53
55
57
59
61

Query Index

63

65

67

69
71

73
75
77
79
81

83

85

87

89

91

93

95

97

@ Batch

=== No Batch

99
101
103
105
107

109

27

Query Response Time [s]

Results

1.8

e Batch
1.6 e N\ 0 Batch
----- Linear (Batch)

1.4 10t MY R BRI B TTNIEN B YOy oSS Linear (No Batch)

=
N

F Y Sy 3 g

[N

o
0

o
o)}

0.4

0.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103 106 109
Query Index

28

Query Response Time [s]

1.8

1.6

1.4

L
N

[N

o
3

o
o

0.4

0.2

1

4 7 10 13

Results

b 1 M L

e Batch

e N0 Batch

16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103 106 109

Query Index

----- Linear (Batch)

----- Linear (No Batch)

29

Artificial Resolver Delays

* Requirements: introduce artificial delays in
resolvers to mask timing side channels (even

with RANSes)

* Approach:
— If data not cached, resolve the request and record
the RTT
— Else, wait for the previously recorded RTT before
returning the response

0.12

0.1

o
o
o

Average Response Time [s]
o o
o o
= o)
]

0.02

0

Delay Effects

===No Delay

== RTT nplny

«==Delta

AR KA AN

N O MmN~ A n OO NN AN 0O0OMNSN 9N OOn NN dn 00N N g

Query Index
31

0.12

Delay Effects

0.1

===No Delay

== RTT nplny

«==Delta

o
o
o

Average Response Time [s]
o o
o o
= o)

0.02

N O MO NN = 1N OO NN o 1N OO~ o wn 0O on N
N AN OO N T DN O O O NN O 0 0 O O

101
105
109

Domain Index
32

Side Effects and Questions

* Worst-case latency for clients
— Is < 0.1s noticeable?

* Per-record query delays can reveal

information about different resolution
strategies

— Should the delay always be the worst case across
all records?

ANONYMITY

Adversarial Model

QUER
Y www.examp,e -
*“0m

35

Adversarial Model

36

Adversarial Model

QUER
Y wwy, Xample co
~0Om

Who
generated
this query?

37

De-Anonymizing Attack

* Goal: use information in queries to link them to specific
clients

 Many features to choose from:
— Query length
— Query target name
— Query frequency (windowed)
— Query single component differences
— Query entropy
— Query target address

e Other possibilities:
— Resolution chain (not visible to stub adversary)

Approach

Data

— Capture DNS packet traces for small set of users over
a single day for numerous days

— One day becomes training data, the rest is test data

Computation

for classifier in classifiers:
for feature _set in combinations(features):
classifier.train(feature_set, training data)
error_rate = classifier.process(feature set, live data)

Classifiers

We sampled a number of classifiers:
e SVM

* Linear classifier (logistic regression)
* SGD (stochastic gradient descent)

* Decision Tree

Results™
Cassfer | featuely | Eworkate.

Linear Query length 0.5185
SVM Query length 0.5076
SGD Query length 0.5077
Linear Query length, query frequency 0.6042
SVM Query length, query frequency 0.5895
SGD Query length, query frequency 0.5425
Linear Query length, query frequency, query target name 0.5293
SVM Query length, query frequency, query target name 0.5224
SGD Query length, query frequency, query target name 0.5342

*subset of the entire result set i

Results™
cassfer | reatrel) | erorRate.

Linear Query length 0.5185
SVM Query length 0.5076
SGD Query lengt 0.5077
Linear Query lengt 0.6042
SVM Query lengt 0.5895
SGD Query lengt 0.5425
Linear Query lengt 0.5293
SVM Query length, query frequency, query target name 0.5224
SGD Query length, query frequency, query target name 0.5342

*subset of the entire result set .

Query Chaffing

* Requirements:
— Chaffing should look similar to existing queries
— Rate should resemble legitimate traffic

e |dea:

— Using DNS packet traces, build a weighted
directed graph of domain relationships

— Sample chaff traffic from neighbors of past
qgueries

Domain Graphs

G = (V,E) such that
— V is the set of domains (QNAMEs)
— (u€V, veV)EE iff vis queried after u from the
same address

* Implies that there is some relationship between the
two domains

 twitter -> facebook -> youtube

Example

_233637DE._suIecast._tcp.local
_googlcp.local

-

S

45

Approach

e Perform random traversal of the domain
graph

* Advance at the average query rate

Queries Without Chaff

it Lt

Results

25
15
10

0

691
991
€91
091
LST
=
16T
14
14"
[474"
6€T
9€T
€el
0€T
LT
144"
Tt
81T
STT
(49"
60T
90T
€01
00T
L6
6
16
88
S8
8
6L
9L
€L
0L
L9
¥9
19
89
SS
4]
61
Ei4
v
oy
LE
Ve
1€
8¢
S¢
[44
6T
9T
€1
0T

Queries With Chaff

25
20
15
10

0

Wrapping Up

* Examined privacy-enhancing mechanisms
have marginal (if any) benefits

— Artificial cache delays: only measure that seems
to truly help while being minimally intrusive

* Anonymity (against the limited adversary)
seems safe

— Stronger adversaries (closer to the clients) will
have an easier time

— Query chaffing helps unify traffic patterns but at
significant cost

QUESTIONS?

FIRE AWAY!

Special thanks to Verisign for their
support of this work!

