## Dyn

### When "others" measure the DNS

Who is doing it? How are they doing? Why does it matter to operators?

**Chris Baker** DNS OARC 2016 Dallas

> INTERNET PERFORMANCE. DELIVERED.

🕈 dyn.com 🕑 @dyn

#### Introduction

- Everyone in this room operates infrastructure related to or performs research on the DNS
- A majority of operators measure / monitor their DNS infrastructure
  - Response time, query load and profile
  - Packet Loss by provider
  - Host health
- When individuals, organizations, or enterprises are making decisions about hosting their own DNS infrastructure or purchasing it from a third party what do they do?
  - Talk to their finance department about OpEx vs. CapEx?
  - Ask on a mailing list?
  - Google / Bing / DuckDuckGo search?



| DNS performance                                                                                           |                                                                                                                                                                                                                     | Sign in R 1 🐻 |  |  |  |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| Web Images Videos M                                                                                       | laps News Explore                                                                                                                                                                                                   |               |  |  |  |
| 6,070,000 RESULTS Any time 👻                                                                              |                                                                                                                                                                                                                     |               |  |  |  |
| DNS Performance - Compare t                                                                               | he speed of enterprise and Related searches                                                                                                                                                                         |               |  |  |  |
| www.dnsperf.com -<br>DNSPerf monitors the most popular DNS<br>hosting. This is an independent project sta | DNS Performance                                                                                                                                                                                                     | <b>.</b> Q    |  |  |  |
| Namecheap · Nsone · Uptime/Quality · Zc                                                                   |                                                                                                                                                                                                                     |               |  |  |  |
| GRC's   DNS Nameserver Per<br>https://www.grc.com/dns/benchmark -                                         | All Videos News Images Shopping More - Sea                                                                                                                                                                          | urch tools    |  |  |  |
| Domain Name Speed Benchmark Are ye<br>Simultaneously compares the performant                              | About 15,500,000 results (0.76 seconds)                                                                                                                                                                             |               |  |  |  |
| DNS PERFORMANCE – To pl<br>www.thisisperformance.com -<br>DNS Fitness Results. Chicago's best in pe       | DNS Performance - Compare the speed of enterprise a www.dnsperf.com/ -                                                                                                                                              | nd commercial |  |  |  |
| Eat better, move better, and train harder w                                                               | This is an independent project started when I was looking for the fastest <b>DNS</b> for jsDelivr. The following charts display the average <b>performance</b> of all requests<br>Linode · ClouDNS · Google · Rage4 |               |  |  |  |
|                                                                                                           | DNS Speed Test to Check DNS Hosting Speed LUltraTo                                                                                                                                                                  |               |  |  |  |

#### DNS Speed Test to Check DNS Hosting Speed | UltraTools

https://www.ultratools.com/tools/dnsHostingSpeed - UltraTools -

The DNS hosting speed tool will give you valuable DNS performance information for each level in the DNS tree to assist with performance evaluations and ...

### **Ask On A Mailing List**

Peter Beckman <beckman@angryox.com>

to Ryan, nanog 🖃

I highly recommend DNS Made Easy. Super fast, extremely reliable (100% up time in the last 10-12 years excluding an 8 hour period 4-5 years ago where they got DDOSed, no issues since), very affordable.

#2 fastest for July: http://www.solvedns.com/dns-comparison/2016/07

Has been #1 several months this year.

Beckman

Peter Beckman beckman@angryox.com Internet Guy http://www.angryox.com/



#### Who is measuring?

Aside from the measurement tools we all know and love

- DNSMon / RIPE Atlas
- NLNOG RING

A number of free and enterprise DNS performance metrics companies have been getting attention

Catchpoint

SolveDNS

CloudHarmony / Panopta

DNSPerf

TurboBytes Pulse



#### Why does it matter to operators?

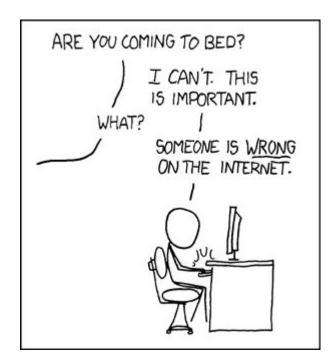
#### Customers / Users ask questions

"Why aren't you #1?"

"Provider X is beating you ... I saw it on randomwebsite.com"

"I am making a DNS decision and I saw this website ... "

More measurements offer operators the ability to contrast other approaches and architectures


This requires us to:

- 1. Become aware that other tools and platforms exist
- 2. Read the docs / details and reach out to the platform operators for any missing bits
- 3. Evaluate the approach compare to your current practices

These measurements represent observations of the infrastructure we all work to build and support.



#### To the single metric based decision maker ...



|            | -  | •  |
|------------|----|----|
| Provider 1 | 1  | 5  |
| Provider 2 | 4  | 2  |
| Provider 3 | 5  | 4  |
| Provider 4 | 7  | 17 |
| Provider 5 | 14 | 10 |
| Provider 6 | 16 | 9  |
| Provider 7 | 20 | 15 |

Ranking 1 Ranking 2



7

#### Varying Published Results - "Query Time"

| Name        | Service #1 | Service #2 | Diff  | Name      | Service #1 | Service #2 | Diff  |
|-------------|------------|------------|-------|-----------|------------|------------|-------|
| DNSMadeEasy | 22.27      | 2.52       | 19.75 | UltraDNS  | 54.88      | 23.41      | 31.47 |
| Dyn         | 24.49      | 8          | 16.49 | DNSimple  | 53.06      | 34.1       | 18.96 |
| CloudFlare  | 10.45      | 8.81       | 1.64  | Google    | 44.97      | 34.86      | 10.11 |
| CDNetworks  | 34.18      | 14.05      | 20.13 | Akamai    | 75.06      | 37.07      | 37.99 |
| Netriplex   | 59.42      | 16.64      | 42.78 | Rackspace | 95.4       | 72.46      | 22.94 |
| VerisignDNS | 54.29      | 18.97      | 35.32 | EasyDNS   | 99.29      | 79.12      | 20.17 |
| He.net      | 43.36      | 22.57      | 20.79 |           |            |            |       |



## The Platforms



#### Free Service #1



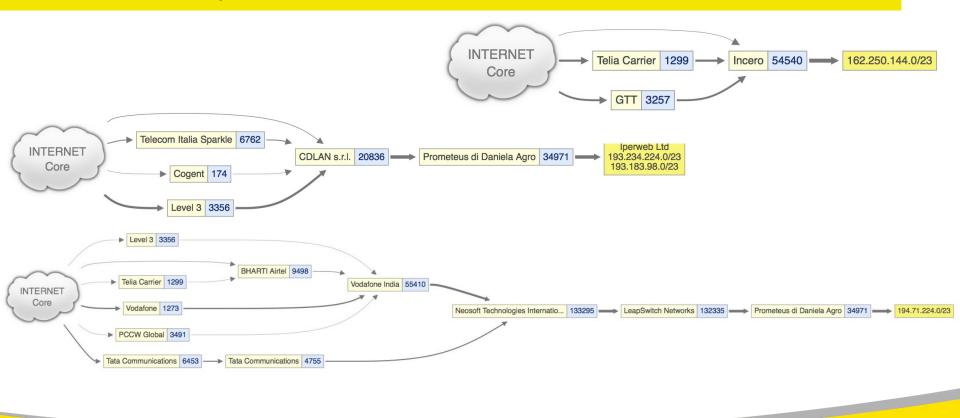


#### Free Service #1

- a) 25 measurement collection points
  - i) 13 US
  - ii) 1 South America
  - iii) 6 Europe
  - iv) 4 Asia ( 2 Singapore, 1 China, 1 Japan )
  - v) 1 Oceania (Australia)
- b) Overview of Measurement Method
  - i) For Each NS Record: dig -4 +norecurse +time=2 +tries=1 @<Nameserver Domain>
    - (1) Average the query response times returned to generate single data point
    - (2) Some thought went into defaults as time default is 5 and tries is 3
  - ii) Each DNS provider is tested every 15 minutes
  - iii) 2 seconds timeout is set
    - (1) If a query takes longer then that query gets ignored



## **Clarifying the Measurement**

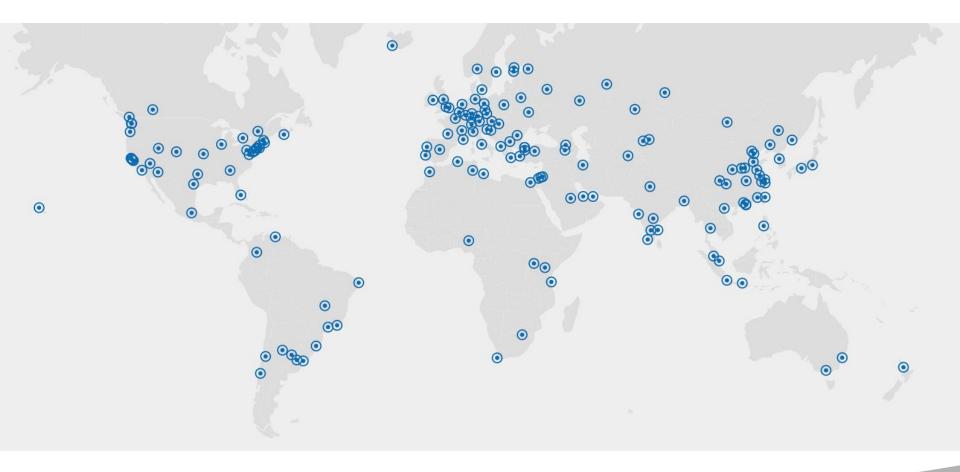

Infrastructure to Infrastructure

- This is measuring the time it takes for the authoritative resolver to receive a request and return an answer to a cloud provider / VPS / datacenter ... etc
  - We see CDNs query authoritative servers directly ... but does this performance data provide what the average buyer is looking for?
  - Or is the consumer looking for insight into the time dns resolution \*could\* take in the event of a recursive cache miss?





#### **Diverse Array of Upstreams and Networks**






#### Free Service #2

- a) Measurement Locations
  - i) Europe ( London and Amsterdam )
  - ii) Asia ( Singapore )
  - iii) North America (Los Angeles, Dallas, New York, San Francisco)
- b) Measurement
  - i) Users visit the site hosting the DNS testing tool.
  - ii) DNS timings taken using the PHP Library Net\_DNS2
  - iii) At the end of the month they generate a report by provider (all name servers):
    - (1) the average speed
    - (2) the minimum speed
    - (3) the maximum speed
    - (4) the standard deviation (SD)
    - (5) the 95% confidence interval around the mean.
- c) The maximum duration is 1 second after which our lookup times out. So if a name server times out, it took 1 second for the dns lookup.





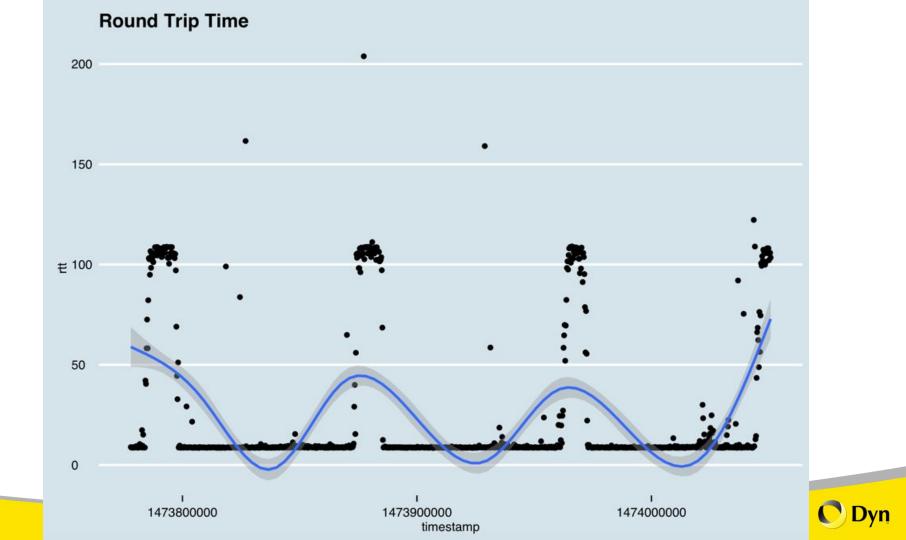
O Dyn

15

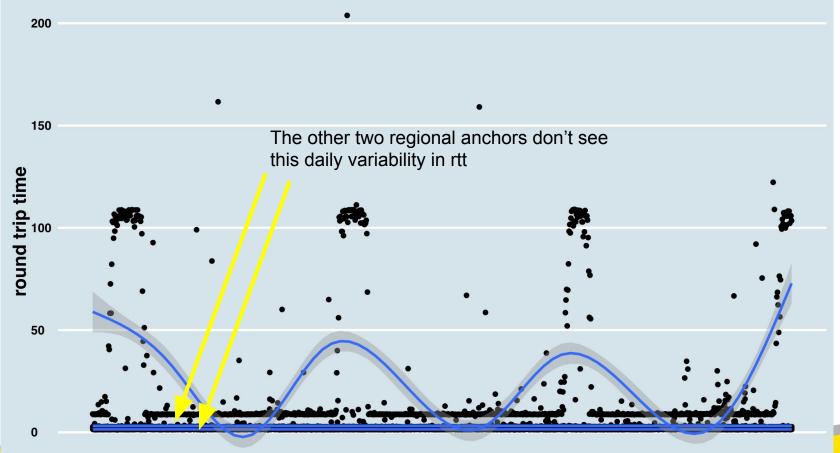
#### **Enterprise Service #1**

- a) Measurement Infrastructure
  - i) > 500 Nodes of different classifications
    - (1) Backbone, Mobile Wireless, IPv6
  - ii) Measurements taken with proprietary tooling
- b) Measurements
  - i) Probes issued 3 times every 1,500ms
  - ii) If no answer is returned after the 3rd attempt, then the test marked failure.
  - iii) DNS timeout at around 4,500ms.
- c) Lack of response is recorded as a 1,500ms response time




#### Enterprise Service #2

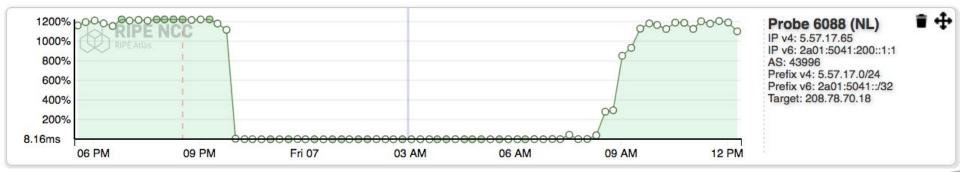
- a) Measurement Platform
  - i) Third Party Platform
    - (1) 50 Nodes globally distributed
    - (2) Measuring with <u>https://github.com/rthalley/dnspython</u>
      - (a) Have options for recursive and non-recursive measurements
  - ii) 250 Independent Test Servers
  - iii) RIPE Atlas Measurements
- b) DNS performance tests every 5 minutes test failures are logged and tagged separately
- c) DNS timeout set for 30 seconds"




# Example of Measurement Complexity






#### **Round Trip Time - Anchor to Nameserver**



#### This issue is the path ...

Traceroute to 208.78.70.18 (208.78.70.18), 48 byte packets







#### **Observed Issues**

- 1) Measurement Granularity
  - a) Frequency of measurement and sampling methodology
  - b) Averaging
    - i) For how many providers does the averaging have a negative impact?
      - (1) Is the average representative of real world observations of performance?
- 2) Network Awareness / Packet Loss
  - a) All DNS providers in a region shown having increasing response times in unison
    - i) Points to potential local or upstream network issues
  - b) If it is being identified how should it be represented / recorded?
    - i) Throw away the sample? Log as timeout value?
- 3) Proximity controls
  - a) Where measurements are taken from and what are they measuring?
- 4) Assumption about timeouts
  - a) Free Platforms use a range of timeout values from 1 to 2 seconds
  - b) Enterprise Platforms use timeout values from 4.5 to 10 seconds



#### Guidance

- What needs to be done to attribute failure?
  - One provider cleverly notes that pings should be issued alongside the DNS probes to monitor packet loss
  - The Sparkle / Tata example shows traceroute provides great insight
  - Additional probing drastically increases cost of monitoring ( in the case of RIPE Atlas )
- How important is the distinction between probe to authoritative measurements vs. probe to recursive measurements?
  - Does this boil down to a combination of record TTL, local recursive vs. off network resolver and network performance between these specific components?
- How do operators want to define availability?
  - If one of the servers in the NS set isn't responding, but the others are how should this be classified?
- What is the consensus on a timeout threshold for a DNS query?
  - Hopefully not needed :)



# Ling Angent

