Anycast vs. DDoS: Evaluating Nov. 30

Giovane C. M. Moura¹, Ricardo de O. Schmidt², *John Heidemann³*, Wouter B. de Vries²,
Moritz Muller¹, Lan Wei³, Christian Hesselman¹

¹SIDN Labs ²University of Twente ³USC/ISI

DNS-OARC Dallas, Texas, USA 2016-10-16

Copyright © 2016 by John Heidemann Release terms: CC-BY-NC 4.0 international Based on a technical paper "Anycast vs. DDoS: Evaluating the November 2015 Root DNS Event", to appear at ACM IMC 2016.

A Bad Day at the Root...

DDoS: Bad and Getting Worse

- big and getting bigger
 - 2012: first 100Gb/s [Arbor12a]
 - 2016: 100Gb/s common; 540Gb/s seen; 1Tb/s possible
- easy and getting easier
 - 2012: several 1000+-node botnets
 - 2016: DDoS-as-a-service (booters): few Gb/s @ US\$1
- frequent and getting frequent-er
 - 2002: the October 30 DNS root event
 - 2016: 3 recent big attacks (2015-11-30, 2015-12-01, 2016-06-25)

How Well Does Anycast Defend?

561 root DNS locations for **13 services** (in 2016-01) large capex and opex

UNIVERSITY

USCViterbi

is 561 *too few? too many?* what happens *under stress?*

Anycast vs. DDoS / 2016-10-16

Our Work: Study Nov. 30 Event

approach and goals

- gather public info about Nov. 30 event
- study it *carefully*
- identify design choices

non-approach and non-goals

- no inside information
- not bashing operators
- not just intentional, but also emergent policies

- generalize for anycast
- suggest future defenses
- not only about DNS and roots
- not help attackers

Contributions

- public evaluation of anycast under stress
- public articulation of design options
- evaluation of collateral damage

prior work for *all*, but in *private*

goals:

USCViterbi

- public discussion => greater transparency
- expectation setting

UNIVERSITY S

• possible future defenses

Parts of Root DNS' Anycast

- one root "."
 - *Q*: .com's NS? A: 192.5.6.30
- provided by 13 letters
 - 12 operators, 13 deployments
 - each different
 - each thoughtful
 - each constrained (peering, funding, etc.)
- 11 use IP anycast sites
 - 5 to 144 anycast sites for each anycast letter
 - (1 uses primary/secondary, 1 is single site)
- sites may have multiple servers

Anycast in Good Times

USCViterbi School of Engineering Information Sciences Institute OF TWENTE

Anycast Under Stress

Anycast Reactions to Stress (do nothing?)

Anycast Reactions to Stress (withdraw some routes?)

Anycast Reactions to Stress (withdraw other routes?)

Best Reaction to Stress? You Don't Know

What Actually Happens?

- studying Nov. 30
- we see withdrawals and degraded absorbers
- some clients lose service
- results vary
 - by anycast deployment

Data About Nov. 30

- RIPE Atlas
 - ~9000 vantage points (RIPE Atlas probes)
 - try every *letter* every 4 minutes
 - except A-root, at this time, was every 30 minutes
 - CHAOS query identifies *server* and implies *site*
 - targets *letters*, not Root DNS (cannot switch letter)
 - global, but heavily biased to Europe
 - we map server->site
 - map will be public dataset
- RSSAC-002 reports
 - self-reports from letters
 - not guaranteed when under stress
- BGPmon routing
 - control plane

6996 RIPE Atlas VPs on 2015-11-30 (looking at K-Root)

Summary of the Events

- two events
 - 2015-11-30t06:50 for 2h40m
 - 2015-12-01t05:10 for 1h
- affected 10 of 13 letters

- data: A-Root had full view (Verisign presentation); RSSAC-002 reports
- about 5M q/s or 3.5Gb/s per affected letter
 - aggregate: 34Gb/s
- real DNS queries, common query names, from spoofed source IPs
- implications:
 - some letters had high loss
 - overall, though DNS worked fine
 - clients retried other letters (as designed)
 - but want to do better

How About the Letters?

some did great: D, L, M: not attacked A: no visible loss

most suffered: a bit (E, F, I, J, K) or a lot (B, C, G, H)

but does "x%" measure what *users actually see?*

UNIVERSIT

USCViterbi

View from Atlas Vantage Points

Reachability at K's Sites

Site Flips from Routing Changes

data: RIPE Atlas]

Site Flips from Routing Changes

Confirming Flips in BGP

flips common during events for most letters

flips seen in BGP

Flips Across Letters: E and K

Flips: Implications

- some ISPs are "sticky" and won't flip
 - will suffer if their site is overloaded
- some ISPs will flip
 - but new site may not be much better
- result depends on many factors
 - actions taken by root operator
 - routing choices by operator and peer
 - and perhaps *peer's peers*, depending on congestion location
 - implementation choices
 - DNS, routing

- consider a service
 - 3 sites: s1, s2, S3
 - s1 and s2: 1Gb/s
 - S3: 10Gb/s
- with clients
 - 4 clients: c0 to c3
- the attack
 - A0 and A1
 - each: 0.49, 0.99, 4.9, or 6Gb/s
- what is the optimal, ideal defense?
 - assume static attackers
 - defender knows attack strengths
 - defender controls routing
- metric: *Happiness* H: number of clients served

- 1. A0+A1 < s1: **do nothing; H=4**
- 2. A0 < s1 and A0+A1 > s2: shed load; H=4
 - vs. H=2 if do nothing
- 3. A0 > s1 and A0+A1 < s3: keep only big site; H=4
 - vs. H=2 if nothing
- 4. A0+A1 > S3: do nothing (s1 is degraded absorber); H=2
- ⇒ with today's uncertainty: "do nothing" looks good
- ⇒ future goal: what is needed (measurement and control) to do better?

1.

2.

vs. H=2 if do nothing
A0 > s1 and A0+A1 < s3:

keep only big site; H=4

A0+A1 < s1: do nothing; H=4

- vs. H=2 if nothing
- 4. A0+A1 > S3: do nothing (s1 is degraded absorber); H=2

A0 < s1 and A0+A1 > s2: shed load; H=4

- ⇒ with today's uncertainty: "do nothing" looks good
- ⇒ future goal: what is needed (measurement and control) to do better?

anycast sites

- vs. H=2 if nothing
- A0+A1 > S3: do nothing (s1 is degraded 4. absorber); H=2
- \Rightarrow with today's uncertainty: "do nothing" looks good
- \Rightarrow future goal: what is needed (measurement and control) to do better?

- A0+A1 < s1: do nothing; H=4
 A0 < s1 and A0+A1 > s2: shed load; H=4

 vs. H=2 if do nothing
 A0 > s1 and A0+A1 < s3: keep only big site; H=4
 vs. H=2 if nothing

 A0+A1 > S3: do nothing (s1 is degraded)
 - A0+A1 > S3: **do nothing** (s1 is degraded absorber); **H=2**
- ⇒ with today's uncertainty:
 "do nothing" looks good
 ⇒ future goal: what is needed (measurement and control) to do better?

During An Event: Active Routing Changes or Not?

- no active routing changes
 - should expect partial loss in future attacks
 - inevitable: non-uniform attacker and defender capacity
 - overloaded catchments will suffer during attack
 - need to pre-deploy excess capacity
 - operators understand and are doing these; but what about user expectations?
- active routing changes
 - important when aggregate attack and defense capacity is similar
 - if one exceeds the other, no need to bother
 - requires *much* better measurement and route control
 - seems like a research problem; AFAIK no tools today
 - important to reduce client losses at smaller sites
 - seems necessary to get to 0% loss

Aside: Collateral Damage

- can an event hurt non-targets?
- yes! ...a risk of shared datacenters

.NL-FRA and .NL-AMS: no traffic

D-FRA and D-SYD: less traffic (even though D was not directly attacked)

In other attacks, B-Root's ISP saw loss to other customers

Recommendations

- current approach reasonable
 - build out capacity in advance
 - no active re-routing during attack
 - should expect some loss during each attack
- need true diversity to avoid collateral damage
- longer-term
 - need research to improve measurement and control
 - active control can improve loss during some attacks
- how many sites needed?
 - there is a *lot* of capacity already
 - many small sites seem to increase partial outages

Conclusions

- anycast under stress is complicated
 - some users will see persistent loss
 - "x% loss" is not complete picture
- options:
 - pre-deploy + no change during is reasonable choice today
 - to avoid loss, will need to do more
- more info:
 - paper: http://www.isi.edu/~johnh/PAPERS/Moura16b
 - data: https://ant.isi.edu/datasets/anycast/

