

## In the search of resolvers

Jing Qiao 乔婧, Sebastian Castro - NZRS

DNS-OARC 25, Dallas

## Background

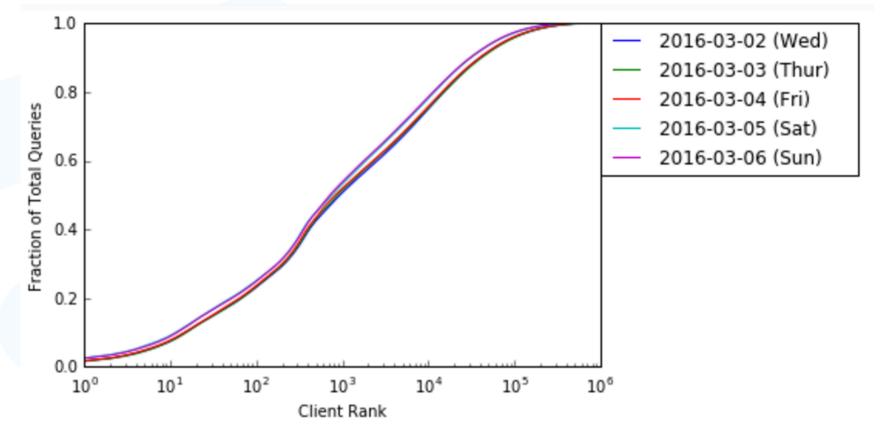
Domain Popularity Ranking
 Derive Domain Popularity by mining DNS data
 Noisy nature of DNS data
 Certain source addresses represent resolvers, the rest a variety of behavior

Can we pinpoint the resolvers?





 Long tail of addresses sending a few queries on a given day



## **Data Collection**

- To identify resolvers, we need some data
- Base curated data

836 known resolvers addresses

- Local ISPs, Google DNS, OpenDNS
- 276 known non-resolvers addresses
  - Monitoring addresses from ICANN
    - Asking for www.zz--icann-sla-monitoring.nz
  - Addresses sending only NS queries

## **Exploratory Analysis**

 Do all resolvers behave in a similar way <u>http://blog.nzrs.net.nz/characterization-of-</u> <u>popular-resolvers-from-our-point-of-view-2/</u>

Conclusions

There are some patterns

- Primary/secondary address
- Validating resolvers
- Resolvers in front of mail servers



## **Supervised classifier**

- Can we predict if a source address is a resolver?
- 14 features per day per address
   Fraction of A, AAAA, MX, TXT, SPF, DS, DNSKEY, NS, SRV, SOA
   Fraction of NoError and NxDomain responses
   Fraction of CD and RD queries
- Training data

Extract 1 day of DNS traffic (653,232 unique source addresses) Base data



## **Training Model**

#### LinearSVC

| Training:         |              |           |             |              |                    |  |  |
|-------------------|--------------|-----------|-------------|--------------|--------------------|--|--|
| LinearSVC(C=2     | 1.0, class_w | eight='ba | lanced', du | ual=True, f  | it_intercept=True, |  |  |
| intercer          | pt_scaling=1 | , loss='s | quared_hing | ge', max_ite | er=1000,           |  |  |
| multi_c]          | lass='ovr',  | penalty=' | 12', random | n_state=None | e, tol=0.0001,     |  |  |
| verbose=          | =0)          |           |             |              |                    |  |  |
| train time: (     | 0.003s       |           |             |              |                    |  |  |
| Cross-validat     | ting:        |           |             |              |                    |  |  |
| Accuracy: 1.0     | 00 (+/- 0.00 | )         |             |              |                    |  |  |
| CV time: 0.05     | 56s          |           |             |              |                    |  |  |
| test time: 0.000s |              |           |             |              |                    |  |  |
| accuracy: 1.000   |              |           |             |              |                    |  |  |
| dimensionalit     | ty: 14       |           |             |              |                    |  |  |
| density: 1.00     | 00000        |           |             |              |                    |  |  |
| classificatio     | on report:   |           |             |              |                    |  |  |
|                   | precision    | recall    | f1-score    | support      |                    |  |  |
|                   |              |           |             |              |                    |  |  |
| 0                 | 1.00         | 1.00      | 1.00        | 73           |                    |  |  |
| 1                 | 1.00         | 1.00      | 1.00        | 206          |                    |  |  |
|                   |              |           |             |              |                    |  |  |
| avg / total       | 1.00         | 1.00      | 1.00        | 279          |                    |  |  |

## **Other Learning Algorithms**

- For the classification problem with less than 100K samples, LinearSVC is the first choice
- We also benchmarked some other algorithms such as K-Neighbors and Random Forest.

All of them achieved 100% accuracy

## Test the model

 Apply the model to three different days

Resolver is represented as 1, and non-resolver as 0.

```
df = predict_result(model, "20160301")
df.isresolver_predict.value_counts()
1 645060
0 8172
```

```
df = predict_result(model,"20160429")
df.isresolver_predict.value_counts()
1 529757
0 6243
```

```
df = predict_result(model,"20151212")
df.isresolver_predict.value_counts()
1     453640
0     9279
```

# **Preliminary Analysis**

Most of the addresses classified as resolvers

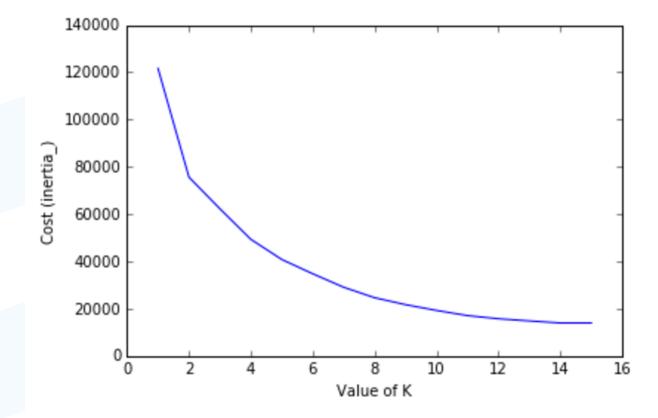
Possibly because the list of non-resolvers show a very specific behaviour Model fitting specific behaviour, leaving any other address as resolver.

• The next iteration of this work should to improve the training data to include different patterns.

## **Unsupervised classifier**

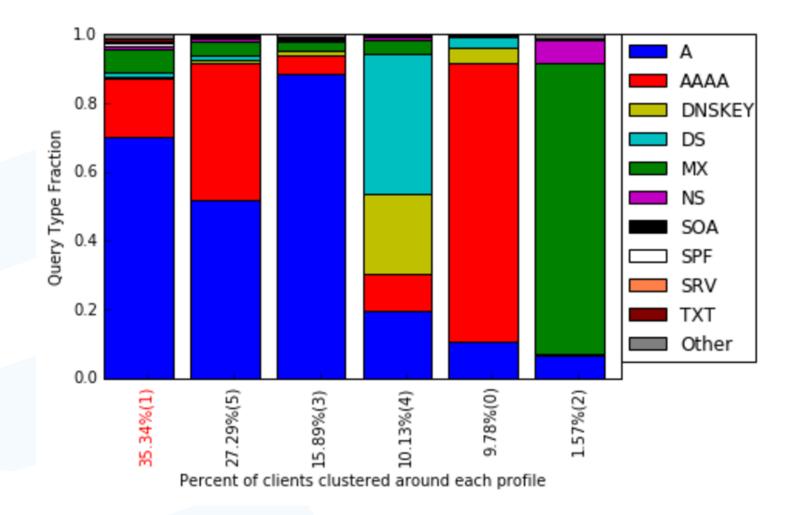
- What if we let a classifier to learn the structure instead of imposing
- The same 14 features, 1 day's DNS traffic
- Ignore clients that send less than 10 queries
   Reduce the noise
- Run K-Means Algorithm with K=6 Inspired by Verisign work from 2013
- Calculate the percentage of clients distributed across clusters

#### **K-Means Cost Curve**

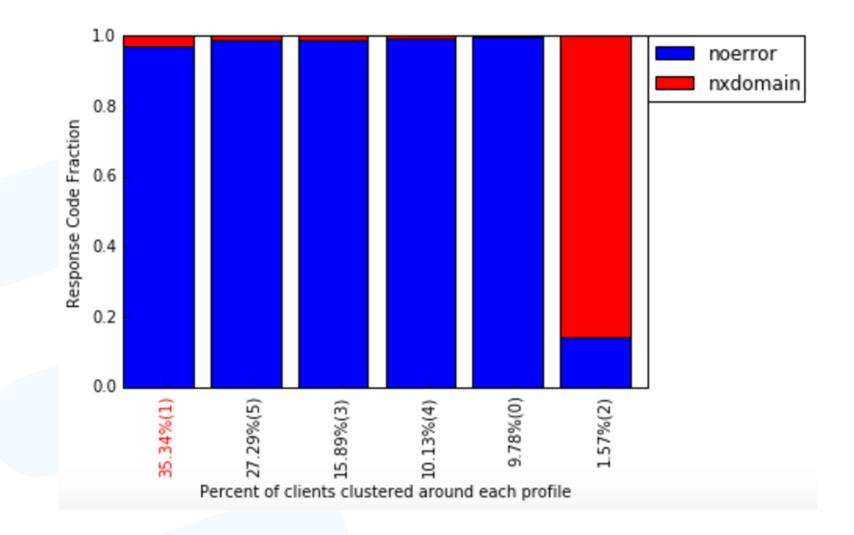




#### **Query Type Profile per cluster**

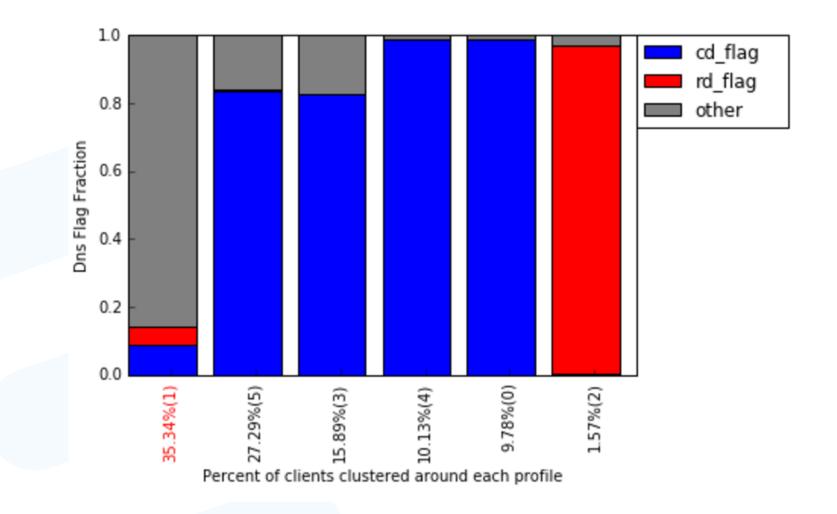


## Rcode profile per cluster



NZRS=

## Flag profile per cluster



## **Clustering accuracy**

- How many known resolvers fall in the same cluster?
  - How many known non-resolvers?
- Tested on both week day and weekend, 98% ~ 99% known resolvers fit in the same cluster

df\_res\_label

|   | label | resolver_ip | total | percent |
|---|-------|-------------|-------|---------|
| 0 | 1     | 831         | 839   | 99.05%  |
| 1 | 3     | 4           | 839   | 0.48%   |
| 2 | 4     | 3           | 839   | 0.36%   |
| 3 | 5     | 1           | 839   | 0.12%   |

df\_nonres\_label

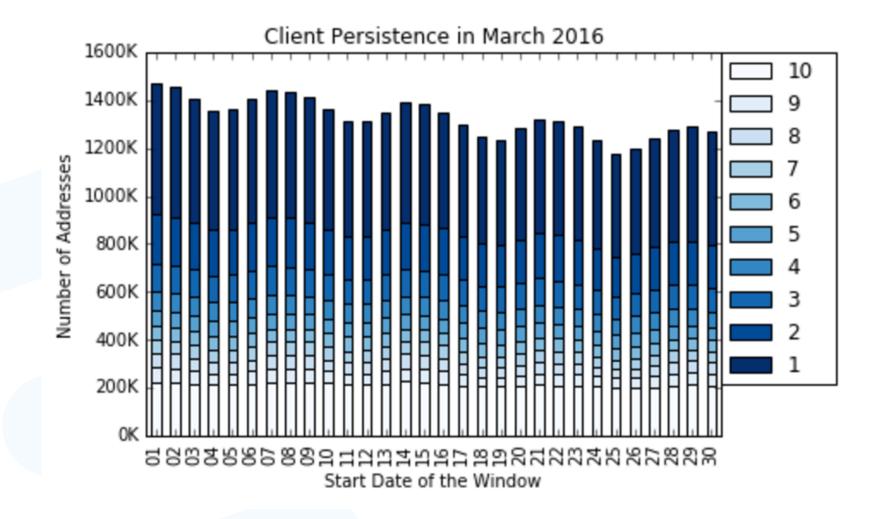
|   | label | nonres_ip | total | percent |
|---|-------|-----------|-------|---------|
| 0 | 1     | 74        | 275   | 26.91%  |
| 1 | 2     | 200       | 275   | 72.73%  |
| 2 | 4     | 1         | 275   | 0.36%   |

## **Client persistence**

- Another differentiating factor could be client persistence
- Within a 10-day rolling window, count the addresses seen on specific number of days
- Addresses sending traffic all the time will fit into known resolvers and monitoring roles



## **Client Persistence**

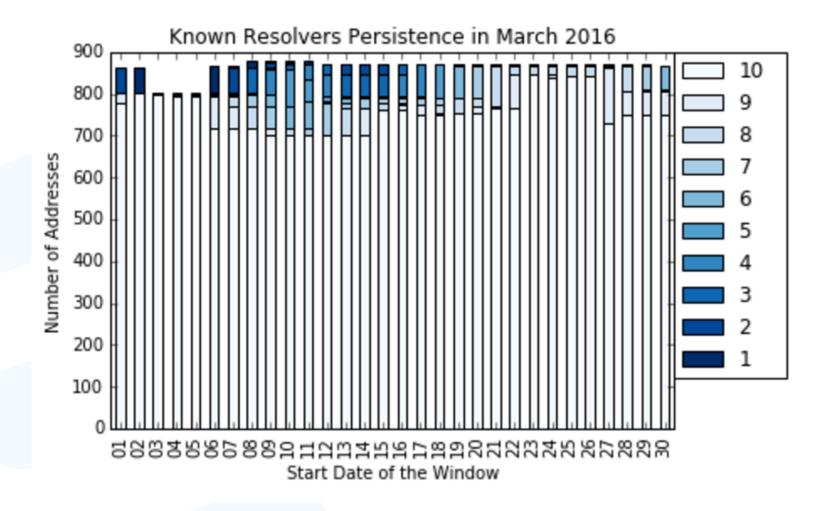


## **Resolvers persistence**

- Do the known resolvers addresses fall into the hypothesis of persistence?
- What if we check their presence in different levels?



#### **Resolvers persistence**



NZRS=

### **Future work**

- Identify unknown resolvers by checking membership to the "resolver like" cluster
- Exchange information with other operators about known resolvers.
- Potential uses: curated list of addresses, white listing, others.



## Conclusions

- This analysis can be repeated to other ccTLDs
- Using open source tools
- Code analysis will be made available
- Easily adaptable to use ENTRADA

#### Contact: jing@nzrs.net.nz, sebastian@nzrs.net.nz www.nzrs.net.nz

