
 Slide 1

OARC 26th Workshop
Madrid, Spain
14 May 2017

DNS-OARC Software
Jerry Lundström

Software Engineer

 Slide 2

Software Development

● Use git, autoconf, automake, libtool, Semantic
Versioning 2.0.0, conform to FHS 3.0, man-
pages

● Continuous Integration using Jenkins, Travis-CI
● Coverity Scan for code analysis
● Compatibility testing on Debian, Ubuntu,

CentOS, FreeBSD and OpenBSD
● Packages for Debian, Ubuntu (and CentOS)

 Slide 3

DNS-OARC Software

● DSC – collect statistics from busy DNS servers
● DSC Presenter – explore the statistics
● dsc-datatool – convert, export, merge and

transform DSC data
● dnscap – capture DNS traffic
● drool – replay DNS traffic
● dumdumd – drop traffic

 Slide 4

DNS-OARC Services

● Reply Size Test – resolver reply size / EDNS test
● Port Test – resolver randomize ports test
● DNS Entropy – resolver randomize the transaction

ID test
● TLDmon – monitor TLD zones
● DANE Tester – DANE browser plug-in test
● Check My DNS – what the frick is your resolver

doing!?

 Slide 5

DNS-OARC Libraries etc

● pcap-thread - PCAP helper library with POSIX
threads support and transport layer callbacks

● omg-dns - library for parsing valid / invalid /
broken / malformed DNS packets

● parseconf - configuration parser library
● sllq - Semi Lock-Less Queue
● Net::GetDNS – Perl bindings for getdns
● ripeatlas – Go bindings for RIPE Atlas API

 Slide 6

And now...

 Slide 7

DSC

● Threads + fork() = BAD
– System libraries detect usage of pthreads and start

using mutexes but does not handle fork which in
rare cases causes deadlocks

– Threads default disabled as of v2.4.0

 Slide 8

DSC

● Inconsistent statistics
– Due to threads, weird select() behavior, interrupt

when dumping reports and the wait before interval
start

 Slide 9

DSC

● Inconsistent statistics – SOLVED
– Threads default disabled

– “pcap_buffer_size <bytes>” to remedy kernel
dropped packets

– “pcap_thread_timeout <ms>” to control granularity
of interval check (default 100ms)

– “no_wait_interval” to skip the initial interval
wait/sync

 Slide 10

DSC

● To prevent “next time” - use Jenkins to
continuously test DSC
– DSC develop branch runs on all platforms and gets

10 QPS

– 9 jobs monitors DSC, logs and XML output

● Let it run a week or so prior to release

https://github.com/DNS-OARC/dsctest

 Slide 11

DSC

Special thanks to:

Anand Buddhdev, RIPE NCC

Klaus Darilion, NIC.AT

Vincent Charrade, Nameshield

 Slide 12

DNS Replay Tool (drool)

● drool replays DNS traffic from packet capture
files (PCAP) and sends it to a specified server

● Comcast sponsored project
● Released v1.0.0-beta.3 29th March
● Happily awaiting feedback, comments and/or

thoughts...
– How about a member-contributed sample PCAP

repository?

 Slide 13

DNS Replay Tool (drool)

● Features include:
– Utilize all the cores

– Manipulate timing between packets to replay faster,
slower or ignore (flood)

– Loop packets infinitely or N iterations

– Replay over UDP, TCP or as it was captured

– … and more to come!

 Slide 14

DNS Replay Tool (drool)

$ src/drool -vv -c 'text:timing ignore; client_pool target
"127.0.0.1" "53"; client_pool skip_reply; client_pool sendas
udp; context client_pools 3;' -r ~/dns.pcap

...

core info: runtime 0.160850035 seconds

core info: saw 286868 packets, 1783450/pps

core info: sent 173686 packets, 1079801/pps 39/abpp

...

Tested on Intel i7-6700K Ubuntu 14.04

 Slide 15

DNS Replay Tool (drool)

● Future improvements
– Parse, match and add more statistics around the

responses

– Increase performance with configurable thread
model and atomic queues

– More statistics overall, control channel and GUI

– Massive client IP simulation
● Use the client IP from the capture, will require specific

network setup

 Slide 16

dumdumd

● High performance UDP/TCP server that ... just
drops everything you send to it
– Used during the development of drool to test the

network code

– Uses libev and/or libuv

– Able to receive ~1 million UDP PPS using EV and
~1.1 million using UV (on an Intel i7-6700K Ubuntu
14.04)

 Slide 17

RIPE Atlas API binding for Go

● Get Atlas measurements:
– from JSON files

– from Atlas RESTful API

– from Atlas streaming API

● Measurement data structures
– ping, traceroute, DNS, HTTP Get, NTP, SSLCert

and Wifi

 Slide 18

https://gist.github.com/jelu/ad8fd5d19bc43451e7f4fa3ae30ca9f4

RIPE Atlas API binding for Go

 Slide 19

https://cmdns.dev.dns-oarc.net/

Check My DNS

 Slide 20

Check My DNS

Number of tests / 4 tests per use = avg 20 uses per day

 Slide 21

Check My DNS

Number of unique netname found in WHOIS data

 Slide 22

Check My DNS

Number of queries seen at authority side

 Slide 23

Check My DNS

Number of queries per protocol

 Slide 24

Check My DNS

Number of queries per IP version

 Slide 25

Check My DNS

More IPv6 then IPv4! Yay!

 Slide 26

Check My DNS

https://cmdns.dev.dns-oarc.net/stats.html

● Remember:
All test data, queries and responses are
available for members to crunch!

 Slide 27

Check My DNS

● Reimplementation in Go underway to increase
performance from ~400 QPS to >50k QPS and
rework API to make integration simpler
– Make it easier to implement new tests

– Have multiple point of presence

– Run as a plug-in on any website to see how your
visitors DNS resolvers operate

 Slide 28

Disclaimer: colors are not final!

 Slide 29

Q's?

https://github.com/DNS-OARC https://www.dns-oarc.net/oarc/tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

