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Software Development

● Use git, autoconf, automake, libtool, Semantic 
Versioning 2.0.0, conform to FHS 3.0, man-
pages

● Continuous Integration using Jenkins, Travis-CI
● Coverity Scan for code analysis
● Compatibility testing on Debian, Ubuntu, 

CentOS, FreeBSD and OpenBSD
● Packages for Debian, Ubuntu (and CentOS)
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DNS-OARC Software

● DSC – collect statistics from busy DNS servers
● DSC Presenter – explore the statistics
● dsc-datatool – convert, export, merge and 

transform DSC data
● dnscap – capture DNS traffic
● drool – replay DNS traffic
● dumdumd – drop traffic
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DNS-OARC Services

● Reply Size Test – resolver reply size / EDNS test
● Port Test – resolver randomize ports test
● DNS Entropy – resolver randomize the transaction 

ID test
● TLDmon – monitor TLD zones
● DANE Tester – DANE browser plug-in test
● Check My DNS – what the frick is your resolver 

doing!?
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DNS-OARC Libraries etc

● pcap-thread - PCAP helper library with POSIX 
threads support and transport layer callbacks

● omg-dns - library for parsing valid / invalid / 
broken / malformed DNS packets

● parseconf - configuration parser library
● sllq - Semi Lock-Less Queue
● Net::GetDNS – Perl bindings for getdns
● ripeatlas – Go bindings for RIPE Atlas API
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And now...



  Slide 7

DSC

● Threads + fork() = BAD
– System libraries detect usage of pthreads and start 

using mutexes but does not handle fork which in 
rare cases causes deadlocks

– Threads default disabled as of v2.4.0



  Slide 8

DSC

● Inconsistent statistics
– Due to threads, weird select() behavior, interrupt 

when dumping reports and the wait before interval 
start
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DSC

● Inconsistent statistics – SOLVED
– Threads default disabled

– “pcap_buffer_size <bytes>” to remedy kernel 
dropped packets

– “pcap_thread_timeout <ms>” to control granularity 
of interval check (default 100ms)

– “no_wait_interval” to skip the initial interval 
wait/sync
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DSC

● To prevent “next time” - use Jenkins to 
continuously test DSC
– DSC develop branch runs on all platforms and gets 

10 QPS

– 9 jobs monitors DSC, logs and XML output

● Let it run a week or so prior to release

https://github.com/DNS-OARC/dsctest



  Slide 11

DSC

Special thanks to:

Anand Buddhdev, RIPE NCC

Klaus Darilion, NIC.AT

Vincent Charrade, Nameshield
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DNS Replay Tool (drool)

● drool replays DNS traffic from packet capture 
files (PCAP) and sends it to a specified server

● Comcast sponsored project
● Released v1.0.0-beta.3 29th March
● Happily awaiting feedback, comments and/or 

thoughts...
– How about a member-contributed sample PCAP 

repository?
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DNS Replay Tool (drool)

● Features include:
– Utilize all the cores

– Manipulate timing between packets to replay faster, 
slower or ignore (flood)

– Loop packets infinitely or N iterations

– Replay over UDP, TCP or as it was captured

– … and more to come!
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DNS Replay Tool (drool)

$ src/drool -vv -c 'text:timing ignore; client_pool target 
"127.0.0.1" "53"; client_pool skip_reply; client_pool sendas 
udp; context client_pools 3;' -r ~/dns.pcap

...

core info: runtime 0.160850035 seconds

core info: saw 286868 packets, 1783450/pps

core info: sent 173686 packets, 1079801/pps 39/abpp

...

Tested on Intel i7-6700K Ubuntu 14.04
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DNS Replay Tool (drool)

● Future improvements
– Parse, match and add more statistics around the 

responses

– Increase performance with configurable thread 
model and atomic queues

– More statistics overall, control channel and GUI

– Massive client IP simulation
● Use the client IP from the capture, will require specific 

network setup
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dumdumd

● High performance UDP/TCP server that ... just 
drops everything you send to it
– Used during the development of drool to test the 

network code

– Uses libev and/or libuv

– Able to receive ~1 million UDP PPS using EV and 
~1.1 million using UV (on an Intel i7-6700K Ubuntu 
14.04)
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RIPE Atlas API binding for Go

● Get Atlas measurements:
– from JSON files

– from Atlas RESTful API

– from Atlas streaming API

● Measurement data structures 
– ping, traceroute, DNS, HTTP Get, NTP, SSLCert 

and Wifi
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https://gist.github.com/jelu/ad8fd5d19bc43451e7f4fa3ae30ca9f4

RIPE Atlas API binding for Go
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https://cmdns.dev.dns-oarc.net/

Check My DNS
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Check My DNS

Number of tests / 4 tests per use = avg 20 uses per day
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Check My DNS

Number of unique netname found in WHOIS data
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Check My DNS

Number of queries seen at authority side
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Check My DNS

Number of queries per protocol
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Check My DNS

Number of queries per IP version
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Check My DNS

More IPv6 then IPv4! Yay!
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Check My DNS

https://cmdns.dev.dns-oarc.net/stats.html

● Remember:
All test data, queries and responses are 
available for members to crunch!
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Check My DNS

● Reimplementation in Go underway to increase 
performance from ~400 QPS to >50k QPS and 
rework API to make integration simpler
– Make it easier to implement new tests

– Have multiple point of presence

– Run as a plug-in on any website to see how your 
visitors DNS resolvers operate



  Slide 28

Disclaimer: colors are not final!
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Q's?

https://github.com/DNS-OARC https://www.dns-oarc.net/oarc/tools
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