
A Study of DNS Rate
Limiting Deployment
Casey Deccio
Brigham Young University
DNS-OARC 27
San Jose, Sep 29, 2017

1

Outline
• DNS-based reflection attacks and solutions
• Response rate limiting
• Measurement techniques
• Results

2

DNS Reflection/Amplification-based
DDoS Attack

Attackers
(Globally distributed)

Servers
(Address B)

Victim
(Address A)

Queries
((spoofed)A → B)

Responses
(B → A)

3

• Increase resources (generally bandwidth)
• Redirect/scrub traffic

DDoS Mitigation – Victim Perspective

4

DDoS Mitigation – Source Perspective
Best Current Practice 38 (BCP38)
• Filter IP packets whose source IP addresses don’t originate in-

network
• That’s it!

5

DDoS Mitigation – Reflector Perspective
DNS Response Rate Limiting (RRL)

• Responses rate limited based on:
� Frequency of incoming domain name/type/source IP

• Responses can be small (truncated)
• Legitimate clients still have a reasonable chance,

depending on RRL configuration

RRL

6

Measuring DNS RRL
• Analyzed authoritative servers for popular DNS zones

� Root zone
� Top-level domains (~1,300)
� Zones associated with Statvoo top Web sites (~900,000)

• Total zone-server pairs analyzed: 3,872,264
� IPv4 and IPv6

7

Why This Is Important
• Measuring DNS RRL deployment represents an effort to

quantify DDoS mitigation techniques.
• DNS RRL represents the deployment effort by those not

primarily affected by DNS reflection-based DDoS.

8

Measurement Methodology

• Parallel queries to each authoritative DNS server (for each zone)
� 500 queries within one second
� Query name matched zone name, type A
� No EDNS
� Gaps between analysis to same server for different zones

• Transparency
� Reverse DNS set up to provide attribution
� Web server provides information including how to opt out.
� Goal – minimize negative impact or negative attention

9

• Divide non-truncated
responses by total queries

• Use 1 ≤ t ≤ 490
� (Accounts for up to 2% of

response loss not related to
rate limiting)

• Results:
� 18% of zone-server pairs

exhibit rate limiting behaviors
� Median threshold: 200 qps

Fig. 1. Cumulative distribution of rate limit threshold calculated using the
naı̈ve collective approach.

1) Collective Approach: The simplest way to detect the rate
limit thresholds exhibited by the servers we queried is to first
compare the number of complete (i.e., not truncated) responses
returned by the server against the total number of queries
issued. This naı̈ve threshold, t, is calculated by considering
the response behavior for the entire set of queries, Q, as a
collection:

t =
|R|� |RT |

|Q|
A plot of the threshold values detected using this technique is
shown in Figure 1 for 1  t  490, accounting for up to 2%
(i.e., 10 of 500) response loss (see Figure 2). The number of
server-domain pairs accounted for in this plot is 694,516, or
17.9% of the total.

There are several potential problems with this naı̈ve ap-
proach to rate limit threshold calculation. The fundamental
issue is that even servers not configured to rate limit queries are
unlikely to respond to 100% of the burst of identical queries
that we subjected them to because of the statistical probability
of loss due to network or server errors. For example, the plot
in Figure 2 shows the comprehensive response rate (i.e.,

t =
|R|
|Q|

) for queries issued to each server for each domain for which
it was authoritative. The median response rate was 0.995,
indicating at least three responses were dropped by half of
servers. As such, a lack of response doesn’t necessarily mean
that the request was not answered because of rate limiting.
This leads to two related side effects. First, the most common
rate limit thresholds might not be detected as accurately
because they are mixed with the casualties of network loss.
Second, the statistical loss results in false positive detection
of rate limiting with arbitrary thresholds.

2) Temporal Approach: We now consider the response
behavior of servers temporally, as the queries are issued over
time. To do this we examine the response behavior of servers,

Fig. 2. Cumulative distribution of the overall response rate.

as queries are issued, looking for changes in response behavior
that are indicative of rate limiting. The simplest indicator of
rate limiting is an unanswered or truncated response, with
the threshold being the query resulting in the first instance of
either of these. However, as mentioned previously, two major
problems with this simple approach are that: 1) an unanswered
query doesn’t necessarily indicate rate limiting but could be
attributed to network loss; and 2) the order of arrival of queries
at the server is non-deterministic, so the detected threshold
value might not be accurate.

To address these shortcomings, we used a sliding window
algorithm to detect the rate limiting threshold for servers
queried. With a sliding window approach, rather than look-
ing only for the first instance of an unanswered query or
a truncated response, we iteratively examine sub-sequences
(windows) of the queries in Q, looking for behavioral trends
within the window that indicate that a rate limiting threshold
has been reached by a server. Each window has w elements,
w � 1. Where a window begins at index i (starting with
i = 0), the query sequence comprising the window is
{qi+1, qi+2, . . . , qi+w}, such that the chronologically first win-
dow considered is: {q1, q2, . . . , qw}. Iterating over queries in
Q chronologically, the first window in which half or fewer of
the w queries received complete (i.e., non-truncated) responses
indicated that a rate limiting threshold had been reached. The
value of the threshold is the midpoint in this window, i.e.,
i + w

2 . Symbolically, this sliding window threshold, t(w), is
represented as follows:

t(w) =
w
2
+ min

0...n�w
i | |{qi+1, qi+2, . . . , qi+w} \ (R�RT)|

w
 0.5

There are some considerations to proper window size se-
lection. Window sizes that are too small will fail to address
the inaccuracies of the simple threshold search in which the
first instance of loss or truncation marks the threshold; this is
equivalent to using the sliding window with a window size of
1. The window size should be at least large enough to account

Determining Rate Limit Thresholds –
Collective Approach

10

• Monitor response loss as it happens

• Group queries temporally by “windows” of size w

• Threshold window: First chronological window in
which the number of queries not responded to
matches or exceeds the number responded to.

• Threshold: the midpoint in the window.

• Advantage: Threshold value can be more accurately
measured, despite out-of-order responses, packet loss,
etc.

Determining Rate Limit Thresholds –
Temporal Approach q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

Window, w = 4

Threshold
window

11

• Results:
� 17% of zone-server pairs
� Median is 75 qps, smaller (more

aggressive) than that using
collective approach.

� About 25% of those rate limiting
have thresholds below 6 qps.

� 80% are less than 250.

Determining Rate Limit Thresholds –
Temporal Approach

Fig. 1. Cumulative distribution of rate limit threshold calculated using the
naı̈ve collective approach.

1) Collective Approach: The simplest way to detect the rate
limit thresholds exhibited by the servers we queried is to first
compare the number of complete (i.e., not truncated) responses
returned by the server against the total number of queries
issued. This naı̈ve threshold, t, is calculated by considering
the response behavior for the entire set of queries, Q, as a
collection:

t =
|R|� |RT |

|Q|
A plot of the threshold values detected using this technique is
shown in Figure 1 for 1  t  490, accounting for up to 2%
(i.e., 10 of 500) response loss (see Figure 2). The number of
server-domain pairs accounted for in this plot is 694,516, or
17.9% of the total.

There are several potential problems with this naı̈ve ap-
proach to rate limit threshold calculation. The fundamental
issue is that even servers not configured to rate limit queries are
unlikely to respond to 100% of the burst of identical queries
that we subjected them to because of the statistical probability
of loss due to network or server errors. For example, the plot
in Figure 2 shows the comprehensive response rate (i.e.,

t =
|R|
|Q|

) for queries issued to each server for each domain for which
it was authoritative. The median response rate was 0.995,
indicating at least three responses were dropped by half of
servers. As such, a lack of response doesn’t necessarily mean
that the request was not answered because of rate limiting.
This leads to two related side effects. First, the most common
rate limit thresholds might not be detected as accurately
because they are mixed with the casualties of network loss.
Second, the statistical loss results in false positive detection
of rate limiting with arbitrary thresholds.

2) Temporal Approach: We now consider the response
behavior of servers temporally, as the queries are issued over
time. To do this we examine the response behavior of servers,

Fig. 2. Cumulative distribution of the overall response rate.

as queries are issued, looking for changes in response behavior
that are indicative of rate limiting. The simplest indicator of
rate limiting is an unanswered or truncated response, with
the threshold being the query resulting in the first instance of
either of these. However, as mentioned previously, two major
problems with this simple approach are that: 1) an unanswered
query doesn’t necessarily indicate rate limiting but could be
attributed to network loss; and 2) the order of arrival of queries
at the server is non-deterministic, so the detected threshold
value might not be accurate.

To address these shortcomings, we used a sliding window
algorithm to detect the rate limiting threshold for servers
queried. With a sliding window approach, rather than look-
ing only for the first instance of an unanswered query or
a truncated response, we iteratively examine sub-sequences
(windows) of the queries in Q, looking for behavioral trends
within the window that indicate that a rate limiting threshold
has been reached by a server. Each window has w elements,
w � 1. Where a window begins at index i (starting with
i = 0), the query sequence comprising the window is
{qi+1, qi+2, . . . , qi+w}, such that the chronologically first win-
dow considered is: {q1, q2, . . . , qw}. Iterating over queries in
Q chronologically, the first window in which half or fewer of
the w queries received complete (i.e., non-truncated) responses
indicated that a rate limiting threshold had been reached. The
value of the threshold is the midpoint in this window, i.e.,
i + w

2 . Symbolically, this sliding window threshold, t(w), is
represented as follows:

t(w) =
w
2
+ min

0...n�w
i | |{qi+1, qi+2, . . . , qi+w} \ (R�RT)|

w
 0.5

There are some considerations to proper window size se-
lection. Window sizes that are too small will fail to address
the inaccuracies of the simple threshold search in which the
first instance of loss or truncation marks the threshold; this is
equivalent to using the sliding window with a window size of
1. The window size should be at least large enough to account

12

Slip Rate
• Percent of DNS responses

returned by authoritative servers,
after threshold reached.

• About 1/3 zone-server pairs
responded to 10% or fewer queries.

• About 40% zone-server pairs
responded to more than half of the
queries.

13

Truncation Rate
• Percentage of DNS responses

truncated by authoritative servers,
after threshold reached.

• For 86% of rate-limiting zone-
server pairs, no truncation was
used.

• About 8% of zone-server pairs
truncated at least 90% of
responses.

14

Rate Limiting Consistency:
Zones on Shared Servers

• For servers authoritative for two
or more zones, analyzed range of
thresholds across all zones.

• Full consistency (range of 0):
� IPv4 – 60%
� IPv6 – 45%

• Extreme differences (range of 500):
� IPv4 – 5%
� IPv6 – 10%

15

Rate Limiting Consistency:
IPv4 and IPv6

• DNS server names with both an A
and a AAAA record, for which rate
limiting was detected, plotted the
difference in threshold.

• Full consistency (0 difference): 80%

• IPv6 had lower thresholds
generally:
� 15% - lower thresholds than IPv4
� 2% - extreme threshold difference

16

Summary
• Rate limiting is deployed by about 17% of authoritative

servers (per DNS zone).
• Thresholds are evenly distributed with ¼ being below 6qps.
• Behavioral inconsistencies exist for
� DNS servers authoritative for two or more zones
� DNS servers with both IPv4 and IPv6 addresses

17

