A Look at RFC 8145 Trust Anchor Signaling for the 2017 KSK Rollover

Duane Wessels
DNS-OARC 26 San Jose, CA
September 29, 2017
Background
2017 Root Zone KSK Rollover

- October 11, 2017!

- Root zone DNSKEY RRset signatures generated from KSK-2017.

- Validating name servers require updated trust anchors before then.

- It would be really nice to know if validators update their trust anchors.
What Is A Trust Anchor?

RFC 4033:

“A configured DNSKEY RR or DS RR hash of a DNSKEY RR. A validating security-aware resolver uses this public key or hash as a starting point for building the authentication chain to a signed DNS response. In general, a validating resolver will have to obtain the initial values of its trust anchors via some secure or trusted means outside the DNS protocol. Presence of a trust anchor also implies that the resolver should expect the zone to which the trust anchor points to be signed.”
How Are Trust Anchors Updated?

- RFC 5011 “Automated Updates of DNS Security (DNSSEC) Trust Anchors.”
- Operating System updates.
- Manually by a system administrator.
How Can We Tell If Trust Anchors Are Updated?

- Can we query all validators, and ask for their trust anchor?
 - Not really.
 - Only Unbound supports a DNS query to observe its trust anchor:
 - `trustanchor.unbound CH TXT` as of v1.6.2
 - They should have ACLs to block external queries anyway.
- How about a “sentinel” record signed by only the new KSK?
 - If the old KSK signs the new KSK (which it must), then new KSK is trusted for validation even if it’s not in the trust anchor set.
 - Also complicated due to root zone DNSSEC design.
- Have validators self-report?
RFC 8145 -- Signaling Trust Anchor Knowledge in DNS Security Extensions (DNSSEC)
RFC 8145 – Key Tag Signaling

• Validators periodically report trust anchor key tags.

• What’s a key tag?
 • A 16-bit integer that identifies and enables efficient selection of DNSSEC public keys. Much like a ones’ complement checksum.
 • 19036 – key tag for KSK-2010
 • 20326 – key tag for KSK-2017

• Reported to a zone’s authoritative name servers.
• Should be transmitted about as frequently as DNSKEY expire.
Two Forms of Key Tag Signaling

• edns-key-tag option.
 - An appended option code in the ENDS0 / OPT record

• Separate key tag query.

• Key tag encoded in query name, using hexadecimal representation.
 - 19063 = hex 4a5c
 - 20326 = hex 4f66
Timeline & Implementations

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 December</td>
<td>draft-ietf-dnsop-edns-key-tag-00</td>
</tr>
<tr>
<td>2016 July</td>
<td>First implementation in BIND</td>
</tr>
<tr>
<td>2017 February</td>
<td>draft-ietf-dnsop-edns-key-tag-05</td>
</tr>
<tr>
<td>2017 April</td>
<td>RFC 8145</td>
</tr>
<tr>
<td>2017 April</td>
<td>First implementation in Unbound</td>
</tr>
<tr>
<td>2017 May</td>
<td>Start collecting data</td>
</tr>
</tbody>
</table>

BIND: ‘trust-anchor-telemetry’ defaults to ‘yes’

Unbound: ‘trust-anchor-signaling’ defaults to ‘no’
EDNS0 vs Qname Key Tag Signals

- BIND and Unbound implement qname-based signaling.
- Any evidence of the edns-key-tag option code (14)?
- Scanned 7 days of pcap files
- Found TWO packets with EDNS0 option edns-key-tag!
 - But really looks like COOKIE (10); optionlen = 8, versus 2
 - Bad UDP checksum
 - → bitflip in option code

- Qname wins!
Data
Data Sources

• Key Tag signals are sent to the name servers authoritative for the key they represent.

• In this case, the root zone.

• This data comes from A-root and J-root.

• Selection bias caveat: data provided by only relatively recent implementations.
SELECT `timestamp`, lower(qname), dstip, srcip, year, month, day
FROM some_hadoop_hive_table
WHERE lower(qname) rlike '^_ta-'
AND qtype = 10
AND product = 'root';
Data Processing

• For each day...

• Find key tag queries...

• For only the root zone...

• Count number of source IPs whose key tags contain:
 • KSK-2010 only
 • KSK-2017 only
 • KSK-2010 AND KSK-2017
 • KSK-2010 OR KSK-2017
Root Zone Key Tag Signaling --- Number of Sources

- Number of Sources
- Number of Signalers

- May 2010
- Jun 2010/2010+2017
- Jul 2010+2017
- Aug 2010+2017
- Sep 2010+2017
- Oct 2010+2017
Root Zone Key Tag Signaling — Number of Sources

Sources always signaling 2010 TA only.

Sources sometimes signaling 2010 TA and sometimes 2010+2017 TAs

Sources always signaling 2010+2017 TAs only

Legend:
- **Red** 2010
- **Yellow** 2010/2010+2017
- **Green** 2010+2017
Non-IANA Key Tags

- How often do we see “unexpected” key tags?
- Observed 19 key tags for root other than 19036 and 20326.
- From less than 10 distinct source IPs per day.
Root Zone Key Tag Signaling — Unexpected Key Tags

- Sources per day

- May
- Jun
- Jul
- Aug
- Sep
- Oct

- Unexpected
- Expected + Unexpected
- Expected
How often do we see key tag queries?

• Do validators report more than once per time-to-live?

• Examine timestamps from self-operated instances of BIND and Unbound.

• Is a partial view useful? e.g., A & J versus all roots?

• Calculate median time between queries from same source.

• Display results as distribution of medians.
Root Zone Key Tag Signaling — Time Between Signals

Count of Source IPs vs. Median time between queries (Days)
Conclusions

• Signals from BIND (and Unbound) appear to be of good quality.
• Probably a strong selection bias due to newness of the protocol.
• Low level of noise, for now anyway.
• edns-key-tag option may never get deployed.

• ISC, Thank you!
• NLnet Labs, please consider enabling trust-anchor-signaling by default.
• Other vendors, please consider implementing RFC 8145.