٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•

Measuring Efficiency of Aggressive Use of DNSSEC-Validated Cache (RFC 8198) Was it worth the effort?

Petr Špaček • petr.spacek@nic.cz • 2018-03-08

Talk outline

• RFC 8198 promises

VS.

- Normal traffic
- Random subdomain attack

CZ_NIC CZ DOMI, REGISTRY

RFC 8198: Promises

- Use of NSEC/NSEC3 RRs to
 - increase "performance"
 - decrease latency
 - decrease resource utilization

CZ

- increase privacy
- increase resilience

RFC 8198: Efficiency

- Query pattern
 - normal traffic
 - random subdomain attack
- Distribution of names in DNS zones

CZ

- Wildcards
- TTL

•	•	٠	•	٠	٠	٠	•	٠	٠	•	•	•		٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	•	•	٠		•		•	•	•		•	٠		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

RFC 8198 + NSEC VS. Normal traffic

Normal traffic: Experimental setup

- Replay query PCAP to BIND 9.12.0
 - synth-from-dnssec yes / no;
- Record to PCAP
 - traffic to auth
 - answers
- Analyze
 - # packets to auth
 - bandwidth to auth
 - latency for answers

Normal traffic: Data set

- 2 hours of traffic in PCAP
- Public Open Resolver run by CZ.NIC
 - ~ 2500 q/second (excluding QTYPE=ANY)

CZ.

- 14 % answers NXDOMAIN
- 3 % answers SERVFAIL
- anonymized

Normal traffic: Tools

- BIND 9.12.0
 - "unlimited" cache size (max-cache-size unlimited)
- Drool 1.1.0 to replay traffic with timing
- DNS Collector to analyze latencies
 - (new project by CZ.NIC, to be released)
- Libtrace 3.0.21 to analyze packet #, bandwidth

Normal traffic: Latency ... ?

Slowest percentile

RFC 8198's promises & normal traffic

- Lower latency
 - Some unexplained increase, a measurement error?
 - Likely not significant for eyeballs (0.1 vs 10 ms)
- Isource and the second s
 - Small but reproducible decrease
 - 1-2 % decrease of # packets to auth
 - 3-4 % decrease of bandwidth to auth

•	•	٠	•	٠	•	٠	•	•	•	•	٠	•		٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	٠	•	•		•	•	•	•	•		•	٠		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

RFC 8198 + NSEC VS. Random subdomain attack

R.S.A. traffic: Experimental setup

- Auth server with a test zone
- Replay random query names to Knot Resolver
- Record traffic to auth into PCAP
- Analyze
 - # packets to auth
 - bandwidth to auth

R.S.A. traffic: Tools

- Knot DNS 2.6.4
 - RSASHA256 2048 b, automatic signing
- Knot Resolver 2.1.1
 - "unlimited" cache size (20 GiB)
- dnsperf 2.1.0 to replay queries
- libtrace 3.0.21 to analyze packet #, bandwidth

R.S.A. traffic: Query pattern

- 1000 simulated clients
- Next query right after answer to previous query
- Pseudorandom unique query names (256 bits)
 - GCZDKQIS7F7TTHXBIBC4HHZDYTFCPH5XLR6P GEI3WIESK7BS45WQ.test.knot-resolver.cz. A
 - GCZDKQIS7F7TTHXBIBC4HHZDYTFCPH5XLR6P GEI3WIESK7BS45WQ.test.knot-resolver.cz. AAAA
 - OF60VT2SNIV54B7HI77V5TJ3TFVULN5AMQ2Z6I WQX6GBHQ254LNQ.test.knot-resolver.cz. A

CZ.

R.S.A. scenarios

- Unsigned zone (baseline)
- Signed zone
 - SOA minimum, NSEC TTL
 - 3600 s / 60 s
 - name distribution (real zones)
 - small zone with wildcard (50 names + 1 wildcard)
 - medium size zone (14k names)
 - big zone (110k names)
 - huge zone (1M names)

R.S.A.: unsigned zone (abs baseline)

traffic to auth [MiB/s]

R.S.A.: unsigned zone (baseline %)

R.S.A.: 50 names + wildcard, TTL 60

time from beginning of the attack [seconds]

time from beginning of the attack [seconds]

time from beginning of the attack [seconds]

time from beginning of the attack [seconds]

RFC 8198's promises & R.S.A. traffic

CZ.

- 🛛 Much better cache usage
- Significantly lower network utilization
 - Eliminates R.S.A. traffic (over time)

Was RFC 8198 worth the trouble?

- YES! (if you use NSEC)
- Normal traffic
 - NSEC only \rightarrow not a significant difference ??
- Random subdomain attack
 - small & medium zones \rightarrow eliminates traffic
 - big & huge zones w/ long TTL \rightarrow eliminates traffic
 - big & huge zones w/ short TTL → cuts traffic to 10-40 %
- NSEC 3 & algorithm impact to be investigated
 CZ_NIC CZ DOMAI

Knot news for spring 2018

• Knot DNS 2.7

- Performance optimizations
- Security audit
- DNS cookies

- Knot Resolver 3.0
- NSEC 3 support for aggressive cache
- Cache pre-fill mechanism