
Measuring ATR

Joao Damas
Geoff Huston

@apnic.net
March 2018

September 2017:

The Internet has a problem …

• Instead of evolving to be more flexible and more capable, it appears
that the Internet’s transport is becoming more ossified and more
inflexible in certain aspects
• One of the major issues here is the handling of large IP packets and IP

level packet fragmentation
• We are seeing a number of end-to-end paths on the network that no

longer support the carriage of fragmented IP datagrams
• We are concerned that this number might be getting larger, not

smaller

The Internet has a problem …

What are we doing about it?
• Fixing this in deployed network infrastructure is extremely hard, so there are

efforts underway to modify host and application behaviour to avoid the
problem
• One avoidance approach has been to clamp the MSS of sessions to a

conservative value that has a very high probability of non-fragmented
transmission
• For example, QUIC uses a fixed 1350 octet MTU
• IPv6 sets a minimum unfragmented MTU of 1280 octets within the IPv6 specification

• As long as applications and protocol stacks keep all packets under some
conservative MTU setting, then the possibility of encountering IP
fragmentation and network/host/firewall/middleware fragmentation packet
loss is substantially reduced

The Internet has a problem …

But what about the DNS?
• One application that is making increasing use of large UDP packets is

the DNS
• This is generally associated with DNSSEC-signed responses (such as

“dig +dnssec DNSKEY org”) but large DNS responses can be generated
in other ways as well (such as “dig . ANY”)
• In the DNS we appear to be relying on the successful transmission of

fragmented UDP packets, but at the same time we see an increasing
problem with the coherence in network and host handling of
fragmented IP packets, particularly in IPv6

Changing the DNS

• One potential avoidance response is to shift all the DNS to TCP
• But this is a last resort response – TCP has much higher overheads in terms of

transaction times and server scaling
• Our current intuition is that the Internet would prefer to continue to operate

the DNS to run over UDP as much as possible

Changing the DNS

• Or shift just all large DNS transactions to TCP
• This is a reversion to the original DNS specification (pre-EDNS(0) UDP buffer

size signalling), where only small (smaller than 512 octets) responses are
passed across UDP.
• Larger DNS responses (larger than 512 octets) are truncated and the

truncation is intended to trigger the client to re-query using TCP
• Again this seems like a heavy-handed solution that is not always required - IP

fragmentation works more often than not

Changing the DNS

• Or we could try a hybrid approach of using both fragmented and
truncated responses at the same time

What is “ATR”?

• It stands for “Additional Truncated Response”
Internet draft: draft-song-atr-large-resp-00

September 2017
Linjian (Davey) Song, Beijing Internet Institute

• It’s a hybrid response to noted problems in IPv4 and IPv6 over
handling of large UDP packets and IP fragmentation
• ATR adds an additional response packet to ‘trail’ a fragmented UDP

response
• The additional response is just the original query with the Truncated

bit set, and the sender delays this additional response packet by 10ms

ATR Operation
UDP DNS Query

Client Server

ATR Operation
UDP DNS Query

UDP DNS Response
(Fragmented)

Client Server

ATR Operation
UDP DNS Query

UDP DNS Response
(Fragmented)

UDP DNS Response
(Truncated)

10ms

Client Server

ATR Operation
UDP DNS Query

UDP DNS Response
(Fragmented)

UDP DNS Response
(Truncated)

10ms

Client Server

TCP Query and Response

The Intention of ATR

• When a UDP DNS response is fragmented by the server, then the
server will also send a delayed truncated UDP DNS response

The delay is proposed to be 10ms
• If the DNS client receives and reassembles the fragmented UDP

response the ensuing truncated response will be ignored
• If the fragmented response is lost due to fragmentation loss, then the

client will receive the short truncated response
• The truncation setting is intended to trigger the client to re-query

using TCP

The Intention of ATR

Today:
• If the client cannot receive large truncated responses then it will need

to timeout from the original query,
• Then re-query using more resolvers,
• Timeout on these queries
• Then re-query using a 512 octet EDNS(0) UDP buffersize
• Then get a truncated response
• Then re-query using TCP

The Intention of ATR

ATR
• If the client cannot receive large truncated responses then it will need

to timeout from the original query,
• Then re-query using more resolvers,
• Timeout on these queries
• Then requery using a 512 octet EDNS(0) UDP buffersize
• Then get a truncated response
• Then requery using TCP

What could possibly go wrong?

• Network level packet re-ordering may cause the shorter truncated
response packet to overtake the fragmented response, causing an
inflated TCP load, and the potential for TCP loss to be triggered
• Not every client DNS system supports using TCP to emit queries

ATR and Resolver Behaviour

Can’t Receive
Fragmented UDP Can’t Use TCP

How big are each of these pools?
What proportion of users are impacted?

ATR will help
ATR won’t be of use, but it
shouldn’t matter

ATR won’t help

Is ATR worth the effort?

• Its unlikely that the resolution delay and resolution failure rate will be
any larger using ATR than without it, and more likely that the both
average resolution times and the overall DNS resolution failure rate
will fall
• But will the gains offset the additional costs in generating this

additional response?

Experiment Details

• Use 6 tests:
• 2 tests use ATR responses – one is DNS over IPv4, the other is DNS over IPv6
• 2 tests use only truncated responses – IPv4 and IPv6
• 2 tests use large fragmented UDP responses - IPv4 and IPv6

• Use the fetch of the web object as the measure of DNS resolution
success/failure
• Experiment counts:
• 48M experiments undertook the DNS over IPv4 tests
• 23M experiments undertook the DNS over IPv6 tests (47%)

A. Large Fragmented UDP response

DNS over UDP over IPv4 – 21% loss rate
DNS over UDP over IPv6 – 38% loss rate

The IPv4 loss rate is significant at 21% of all samples
• up to 4% could be attributed to experimental uncertainties on linkage of the

DNS to web object retrieval
• which leaves 17% as a minimum loss rate in IPv4 for large responses

IPv6 shows a very significant level of loss
• which is comparable to that observed in September 2017
• the minimum loss rate is 34%, accounting for likely web object conversion loss

rates

B. Truncated UDP Response and TCP

DNS over IPv4 – 5% TCP loss rate

DNS over IPv6 – 9% loss rate

We are looking here at the proportion of experiments that react to the

truncated response with a TCP session. The “loss” referred to here is a

loss relating to the lack of a followup TCP session, and does NOT

include any web retrieval loss factors

The IPv6 TCP failure rate slightly less than double the IPv4 failure rate

C. ATR

• IPv4 DNS:
• 72% successfully retrieved the object without using TCP

• 38% did not
• This is higher than the large packet drop rate probably due to packet reordering factors)

• 16% used TCP
• 12% did not use TCP and did not retrieve the web object

• IPv6 DNS:
• 54% successfully retrieved the object without using TCP

• 46% did not
• This is again higher than the large packet drop rate probably due to packet reordering factors)

• 28% used TCP
• 18% did not use TCP and did not retrieve the web object

Large DNS responses

• There is a major issue with large fragmented UDP responses in the
DNS, and IPv6 is certainly far more of a problem in this respect than
IPv4 - ATR would normally be expected to address this
• The issue would appear to be zealous firewalls in IPv4 and a combination of

firewalls and IPv6 extension header packet drop in IPv6

• However, there is also a significant TCP drop rate for the DNS
• Here we can probably ascribe this to zealous firewalls, but there may also be

UDP-only DNS clients out there as well

• Which means that large responses have a drop rate in the DNS, both
in UDP and TCP, that cannot be ignored

ATR and Large DNS Responses

IPv4 Failure Rate
WITHOUT ATR: 22%
WITH ATR: 12%

IPv6 Failure Rate
WITHOUT ATR: 38%
WITH ATR: 18%

Can we improve on this experiment?

The issue here is that there is a considerable level of uncertainty
introduced with the use of the web fetch to determine whether or not
the client successfully received the DNS answer

Client Server

DNS Query

DNS Response

HTTP GET Query

Measuring within the DNS

Glueless Delegation

Measuring within the DNS

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com
Answer 1: NS nsb.z.example.com

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com
Answer 1: NS nsb.z.example.com

<discover name servers for z.example.com>

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com
Answer 1: NS nsb.z.example.com

<discover name servers for z.example.com>

Query 2: nsb.z.example.com to z.example.com

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com
Answer 1: NS nsb.z.example.com

<discover name servers for z.example.com>

Query 2: nsb.z.example.com to z.example.com
Answer 2: 192.0.2.1

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com
Answer 1: NS nsb.z.example.com

<discover name servers for z.example.com>

Query 2: nsb.z.example.com to z.example.com
Answer 2: 192.0.2.1

Query 3: a.b.example.com to 192.0.2.1

Measuring within the DNS
Query 1: a.b.example.com? to ns.example.com
Answer 1: NS nsb.z.example.com

<discover name servers for z.example.com>

Query 2: nsb.z.example.com to z.example.com
Answer 2: 192.0.2.1

Query 3: a.b.example.com to 192.0.2.1
Answer 3: 10.0.0.1

Measuring within the DNS

• A resolver will only ask Query 3 if it has received Answer 2
• If we alter the characteristics of Answer 2, we can test resolvers to

determine if they can accept the tested behavior by observing if they
are able to perform Query 3
• This allows us to perform a measurement without the uncertainty of

the DNS-to-Web transition

ATR Measurement 2

• Test a Fragmented UDP plus Trailing Truncated packet (ATR) against a
small response in DNS-over-IPv4 and DNS-over-IPv6

ATR Results from Measurement 2

• V4 Tests: 51M
• V6 Tests: 28M (V6 capability of 54%)

Control Success Rate: V4: 99.2%
V6: 97.6%

ATR Success Rate: V4: 98.0% TCP Rate: 27.7%
V6: 96.7% 44.0%

ATR Assessment

• Is this level of benefit worth the additional server and traffic load
when sending large responses?
• Is this load smaller than resolver hunting in response to packet drop?
• It the faster fallback to TCP for large responses a significant benefit?
• Is 10ms ATR delay too short? Would a longer gap reduce response

reordering?
• Do we have any better ideas about how to cope with large responses

in the DNS?

