
Message Digests for DNS Zones
Duane Wessels
DNS-OARC 26, Amsterdam
October 13, 2018

Verisign Public

Overview & Outline

• Internet Draft proposing message digest over zone
contents and a new ZONEMD RR type
• Coauthors: P. Barber, W. Hardaker, W. Kumari, M. Weinberg

• Motivation
• Channel security vs Data security
• Alternatives considered

• How it works
• Digest calculation algorithm
• A simple example
• Verifying the digest

• Implementation Experience
• Can it work with large, dynamic zones?

2

Verisign Public

Motivation

3

Verisign Public

Motivation

• Given a zone file, how can you tell if it’s authentic?
• It should be possible to verify a zone’s authenticity:

• Independent from how it was received
• Independent from where it was received
• As a self-contained zone file
• Using DNSSEC for strong security
• Before being loaded into a name server

• What do we mean by authentic?
• As published by the zone owner / operator
• Complete
• No records added, removed, or modified

4

Verisign Public

Why?

• Historically, zone distribution was simple:
• Master server
• Small number of secondary servers
• Transfer secured with TSIG (RFC 2845)

• Today’s complexity
• Multiple, third-party DNS providers
• Wider distribution for anycast
• RFC 7706 and “Hyperlocal Root”

• Other uses
• RPZ – Response Policy Zones
• CZDS – Centralized Zone Distribution System
• Catalog Zones

5

Verisign Public

Is This New?

• RFC 2065 (“DNSSEC v1” 1997) proposed a Zone
Transfer (AXFR) SIG

• Later dropped from RFC 2535 (1999)
• Similar to this proposal

• But only for zone transfer?
• Any only for signed RRsets?
• Less well specified

“SIG(AXFR) was rejected because it required putting the zone into
canonical order and calculating the signature, in the case of dynamic
update this is a real expensive operation, thus we got rid of it.” -- Olafur

6

Verisign Public

Channel vs Data Security

Channel Security
• Protects data in transit
• Authenticates endpoints
• Places trust in a “server”
• Ephemeral

Data Security
• Protects data at rest
• Authenticates the data
• Places trust in “publisher”
• Independent of transport

7

Verisign Public

Doesn’t DNSSEC Already Solve This?

• Certainly DNSSEC protects clients from false data
• Does not protect consumers of zone files

• Zone file consumers could validate all signatures and denial of
existence records...

• Delegation records are unsigned
• DNSSEC does not prevent resolvers from sending

queries to an incorrect (eavesdropping) name server
• Use of DNS data other than by users / validators

• “control plane”
• RPZ
• SOA
• uses not yet envisioned

8

Root Zone 2018080100
10,773 RRsets
1,400 Signed
9,373 Unsigned

Verisign Public

Why not just use...

• PGP
• S/MIME
• TLS/HTTPS
• TSIG
• SIG(0)
• DNSSEC signature over unsigned records
• One hash/digest per RRset

9

Verisign Public

How It Works

10

Verisign Public

New RR Type: ZONEMD

• At zone apex
• Four fields

• Serial
• Digest Type
• Reserved
• Digest

• Should ZONEMD Digest Type just use IANA protocol
registry for DS digest types?

• More on “Reserved” later...

11

Verisign Public

Digest Calculation Process

1. Add a “placeholder” ZONEMD record
2. Sort zone records using DNSSEC canonical ordering

1. RRSets having same owner sorted by numeric RR type
3. Optionally sign zone
4. Calculate digest

1. Over concatenation of sorted RRs in canonical on-the-wire format
2. All records
3. Exclude any extra SOA
4. Include ZONEMD placeholder
5. Exclude ZONEMD RRSIGs if zone is signed

5. Update Digest field of (placeholder) ZONEMD record
1. Update ZONEMD signatures if zone is signed

12

Verisign Public

A Simple Example

13

@ IN SOA 2018040900 1800 900 604800 86400

@ IN NS ns1.other.zone

@ IN NS ns2.other.zone

www IN A 192.168.0.1

www IN AAAA FC00:7F::1

...

Start with a zone file

Verisign Public

A Simple Example

14

@ IN SOA 2018040900 1800 900 604800 86400

@ IN NS ns1.other.zone

@ IN NS ns2.other.zone

www IN A 192.168.0.1

www IN AAAA FC00:7F::1

...

@ IN ZONEMD 2018040900 1
00

Add placeholder ZONEMD record

Verisign Public

A Simple Example

15

@ IN SOA 2018040900 1800 900 604800 86400

@ IN NS ns1.other.zone

@ IN NS ns2.other.zone

www IN A 192.168.0.1

www IN AAAA FC00:7F::1

...

@ IN ZONEMD 2018040900 1
00

Sort

Verisign Public

A Simple Example

16

hash()

Calculate digest

16e0cd1936ad41fd8ac2a80db3f6d1ff4f811877

@ IN SOA 2018040900 1800 900 604800 86400

@ IN NS ns1.other.zone

@ IN NS ns2.other.zone

www IN A 192.168.0.1

www IN AAAA FC00:7F::1

...

@ IN ZONEMD 2018040900 1
00

Verisign Public

A Simple Example

17

hash()

Update ZONEMD digest field

@ IN SOA 2018040900 1800 900 604800 86400

@ IN NS ns1.other.zone

@ IN NS ns2.other.zone

www IN A 192.168.0.1

www IN AAAA FC00:7F::1

...

@ IN ZONEMD 2018040900 1
16e0cd1936ad41fd8ac2a80db3f6d1ff4f811877

16e0cd1936ad41fd8ac2a80db3f6d1ff4f811877

Verisign Public

Digest Verification

• Determine if zone should have DNSSEC signatures
• Determine if ZONEMD record provably does or does not

exist if signed
• Validate SOA and ZONEMD signatures if signed
• Check for matching Serial in SOA and ZONEMD
• Check that ZONEMD digest type is supported
• Calculate zone digest and compare to ZONEMD digest

field

18

Verisign Public

Implementation Experience

19

Verisign Public

An Implementation

• Uses ldns (from NLNet Labs) for underlying RR
manipulation

• Features implemented
• Read zone file
• Add ZONEMD placeholder
• Compute digest and update ZONEMD
• Re-compute ZONEMD signature
• Verify digest from input file

• Thanks to Shane Kerr for another implementation
• Led to discovery of a byte-order bug in my code

20

Verisign Public

Basic Benchmarks

21

Verisign Public

Basic Benchmarks

22

Verisign Public

What About Dynamic Updates for Large Zones?

23

Verisign Public

Large Zones & Dynamic Updates

• Some of the dnsop list discussion has been about large
zones and/or dynamic updates.

• Neither are a problem for zone digests, per se.
• It is possible to have a large zone but not need frequent

digest calculation.
• It is possible to have dynamic zones where digest

calculation is efficient.
• Taken together, large, dynamic zones could pose a

challenge.

24

Verisign Public

Efficiently Digesting Dynamic Updates

• Partition zone namespace and use non-binary Merkle
Tree* hashing

• The Reserved Depth field defines depth of the hash tree
• Depth = 0 means no tree and hash over whole zone

• Digests at leaf nodes over partitioned and sorted RRsets
• Digests at non-leaf nodes over child node digest values

*But NOT a blockchain

25

Verisign Public

Hash Tree

• Of some depth D and
width W

• Total possible # partitions
= WD

• Deterministic partition
function, e.g. based on
depth and owner name

get_branch(name, depth) {
len = strlen(name);
if (len == 0)

return 0;
pos = depth % len;
branch = *(name+pos) % max_width;
return branch;

}

26

m.root-servers.net. 518400 IN A 202.12.27.33
m.root-servers.net. 518400 IN AAAA 2001:dc3::35
l.root-servers.net. 518400 IN A 199.7.83.42
l.root-servers.net. 518400 IN AAAA 2001:500:9f::42
k.root-servers.net. 518400 IN A 193.0.14.129
k.root-servers.net. 518400 IN AAAA 2001:7fd::1
j.root-servers.net. 518400 IN A 192.58.128.30
j.root-servers.net. 518400 IN AAAA 2001:503:c27::2:30
i.root-servers.net. 518400 IN A 192.36.148.17
i.root-servers.net. 518400 IN AAAA 2001:7fe::53
h.root-servers.net. 518400 IN A 198.97.190.53
h.root-servers.net. 518400 IN AAAA 2001:500:1::53
g.root-servers.net. 518400 IN A 192.112.36.4
g.root-servers.net. 518400 IN AAAA 2001:500:12::d0d
f.root-servers.net. 518400 IN A 192.5.5.241
f.root-servers.net. 518400 IN AAAA 2001:500:2f::f
e.root-servers.net. 518400 IN A 192.203.230.10
e.root-servers.net. 518400 IN AAAA 2001:500:a8::e
d.root-servers.net. 518400 IN A 199.7.91.13
d.root-servers.net. 518400 IN AAAA 2001:500:2d::d
c.root-servers.net. 518400 IN A 192.33.4.12
c.root-servers.net. 518400 IN AAAA 2001:500:2::c
b.root-servers.net. 518400 IN A 199.9.14.201
b.root-servers.net. 518400 IN AAAA 2001:500:200::b
a.root-servers.net. 518400 IN A 198.41.0.4
a.root-servers.net. 518400 IN AAAA 2001:503:ba3e::2:30

Verisign Public

Tree Depth/Width vs Digest Calculation Time?

27

Verisign Public

Tree Depth/Width vs Digest Calculation Time?

28

Verisign Public

Tree Depth/Width vs Digest Calculation Time?

29

Verisign Public

Tree Depth/Width vs Digest Calculation Time?

30

Verisign Public

Hash Tree Enables Efficient Updates

• Only need to sort RRs in leaf nodes with updates
• Re-hash leaf node and its intermediate nodes leading up

to the top
• Significantly faster
• Increased complexity
• Imposes a new / different zone data structure

31

Verisign Public

Digest Update Time vs Depth

32

Verisign Public

Digest Update Time vs Depth

33

Verisign Public

Digest Update Time vs Depth

34

Verisign Public

Digest Update Time vs Depth

35

Verisign Public

Conclusions, Questions, Links

• Efficient support for large dynamic zones is possible with
hash trees
• Even appears to improve performance for large static zones
• But is the complexity worth it?

• Digest useful without DNSSEC?
• Should DNSSEC be required?

• Draft: draft-wessels-dns-zone-digest-03
• Proposed Standard → Experimental
• Depth > 0 not described

• Implementation:
• https://github.com/verisign/ldns-zone-digest

36

© 2016 VeriSign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and designs are registered or unregistered trademarks of
VeriSign, Inc. and its subsidiaries in the United States and in foreign countries. All other trademarks are property of their respective owners.

