Recursive Resolver Delegation Selection

Kyle Schomp

OARC 30
2019-05-12
How do recursive resolvers choose among delegations?

```
$dig @a.gtld-servers.net edgekey.net +noall +auth
;; DiG 9.10.3-P3 <<< @a.gtld-servers.net edgekey.net +noall +auth
(2 servers found)

13 NS records with accompanying A/AAAA records
```
How do recursive resolvers choose among delegations?

Specific resolver software in the lab

Probing resolvers on the Internet

Resolvers on the Internet with real traffic

This talk…
Reasons why we want to know

1. Informs decisions made in authoritative nameserver deployments

2. Knowing the limitations in common behavior among recursive resolvers can motivate improvements in that behavior
10min of Akamai’s authoritative DNS servers’ logs
 • Queries for CDN domain edgekey.net
 • IPv4 traffic only
 • Assume latency stable over short interval

Repeated experiments
 • Different times
 • Different CDN domains
 • Similar findings

Ping each source IP address in logs of authoritative DNS server
Dataset

- 890k source IP addresses
 - ~89k with ≥ 90 DNS queries
- 66% of resolvers with ≥ 90 DNS queries responded to ping
Dataset

- 890k source IP addresses
 - ~89k with ≥ 90 DNS queries
- 66% of resolvers with ≥ 90 DNS queries responded to ping

Assuming uniform distribution, >1% chance of not sampling all 13 delegations, Account for 16% of all DNS traffic logged

% of recursive resolver IP addresses

<table>
<thead>
<tr>
<th>Number of Queries Logged</th>
<th>Percent of Recursive Resolver IP Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-89</td>
<td>90%</td>
</tr>
<tr>
<td>90-179</td>
<td></td>
</tr>
<tr>
<td>180-269</td>
<td></td>
</tr>
<tr>
<td>270-359</td>
<td></td>
</tr>
<tr>
<td>≥360</td>
<td></td>
</tr>
</tbody>
</table>
Dataset

- 890k source IP addresses
 - ~89k with ≥ 90 DNS queries
- 66% of resolvers with ≥ 90 DNS queries responded to ping

Assuming uniform distribution, >1% chance of not sampling all 13 delegations, Account for 16% of all DNS traffic logged

Focus on these 10% first, we'll come back to the others
of delegations used

1. 25% of resolvers query all delegations
2. No obvious limit on the number of delegations used

May be due to favoring one delegation over another (i.e., non-uniform distribution)
Uniform distribution of queries among delegations

- Use χ^2 test for uniformity in queries per delegation
 - ~1.7% resolvers potentially uniform
- Assume that non-queried delegations are excluded and that resolver uniformly selects among queried subset
 - ~6.7% resolvers potentially uniform
- Bounded, real answer likely between
Resolvers using a single delegation for nearly all traffic

- Choice may be random or by latency
- 5% only ever queried a single delegation
 - Cannot tell whether using lowest latency delegation
- Nearly ¾ of others use the fastest delegation for nearly all traffic

~10% send nearly all (>95%) traffic to a single delegation
What about the other ~83% of resolvers?

- Neither uniform nor single delegation
- Uneven distribution of queries among the 13 delegations
- Measure of unevenness – Shannon entropy
© 2019 Akamai | Confidential

- Wide variation in distribution
- Clear preference for some delegations over others but degree of preference varies

~3.7 is max with a uniform distribution

~All queries to a single delegation
• Wide variation in distribution
• Clear preference for some delegations over others but degree of preference varies
Wide variation in distribution

Clear preference for some delegations over others but degree of preference varies

~3.7 is max with a uniform distribution

All queries to a single delegation
Delegation usage dependent upon latency

- Previous research has shown that some recursive resolver software selects delegation by weights inversely proportional to estimated RTT
 - $w \sim \frac{1}{RTT}$
- Relationship may not be linear
- Discovering RTT
 - Each DNS query is an opportunity to measure RTT
 - Un-queried delegations have unknown RTT
Calculate fraction of queries to fastest $\frac{1}{2}$ delegations
Low latency preference

- Most resolvers show a preference for faster delegations
Low latency preference

- Most resolvers show a preference for faster delegations
Low latency preference

- Most resolvers show a preference for faster delegations

Assumes unused delegations were previously observed to be high latency

Fastest ½ delegations favored over slowest ½
Delay added to resolutions

- Not using the fastest delegation increases resolution time
- Upper bound on impact since some queries may be prefetching

15% inflate RTT by >50ms on average
Delay added to resolutions

- Not using the fastest delegation increases resolution time
- Upper bound on impact since some queries may be prefetching

Use lowest latency delegation (probe others once per 5 minutes). 15% > 22ms
Preventing Cache Poisoning

- Spreading queries across delegations adds entropy
- Randomizing source port + transaction ID provides ~31-bits of entropy
- Alternatives for adding entropy do not impact performance
Preventing Cache Poisoning

- Spreading queries across delegations adds entropy
- Randomizing source port + transaction ID provides ~31-bits of entropy
- Alternatives for adding entropy do not impact performance

Achievable by 0x20 encoding (e.g.) “com” for zones under com
Preventing Cache Poisoning

- Spreading queries across delegations adds entropy
- Randomizing source port + transaction ID provides ~31-bits of entropy
- Alternatives for adding entropy do not impact performance

Achievable by 0x20 encoding (e.g.) “com” for zones under com

Achievable by randomizing among 16 source IPs (e.g., resolver “pool”)

CDF of recursive resolver IPs vs. entropy of delegation choice
What about the rest?

- Limited data makes it harder to identify behavior
- Do they behave the same?

90% of recursive resolver IP addresses

The Rest
Is there anything special about the 90 queries threshold?

- Threshold of 90 queries is somewhat arbitrary
- If resolvers below the threshold behave similar to those above, then observations can be generalized
Is there anything special about the 90 queries threshold?

- Threshold of 90 queries is somewhat arbitrary
- If resolvers below the threshold behave similar to those above, then observations can be generalized

A smaller disjoint set of source IP addresses shows similar distribution in delegation choice
Is there anything special about the 90 queries threshold?

- Preference for lower latency delegations also looks similar
Query rates too low

- Low query rates mean many resolvers will not use the low latency delegations despite algorithms that attempt to identify them.

Graph showing the distribution of recursive resolver IP addresses with <1 query per minute average from 60% of source IPs, ~3% of DNS traffic.
Summary

- <6.7% of resolvers query delegations uniformly
- ~10% of resolvers send nearly all queries to a single delegation
 - Likely the lowest latency delegation
- Remainder attempt to prefer low latency delegations
 - Higher average resolution time over alternatives
 - 60% of resolvers (~3% of DNS traffic) have querying rates low enough that algorithms likely unsuccessful
Suggested improvements

• Authoritative nameserver deployments should strive to offer low latency for all delegations
 • Agrees with findings in other research

• Recursive resolver software can reduce resolution time by using the fastest delegation for the vast majority of DNS queries
 • Probe other delegations rarely
 • Open question: how frequently is good enough?
 • Use other methods for adding entropy to prevent cache poisoning attacks
Thank you! Questions?
Kyle Schomp
kschomp@akamai.com
<10 queries in 10 min (using 1 day of logs)

Recursive algorithm changes unlikely to help here

>89 queries in 10 min (using 10 min of logs)