Recursive Resolver Delegation Selection

Kyle Schomp

OARC 30 2019-05-12

How do recursive resolvers choose among delegations?

\$dig @a.gtld-servers.net edgekey.net +noall +auth

; <<>> DiG 9.10.3-P3 <<>> @a.gtld-servers.net edgekey.net +noall +auth

; (2 servers found)

;; global options: +cmd

edgekey.net.	172800	IN	NS	ns1-66.akam.net.
edgekey.net.	172800	IN	NS	usw6.akam.net.
edgekey.net.	172800	IN	NS	adns1.akam.net.
edgekey.net.	172800	IN	NS	ns4-66.akam.net.
edgekey.net.	172800	IN	NS	ns7-65.akam.net.
edgekey.net.	172800	IN	NS	ns5-66.akam.net.
edgekey.net.	172800	IN	NS	a6-65.akam.net.
edgekey.net.	172800	IN	NS	a12-65.akam.net.
edgekey.net.	172800	IN	NS	a5-65.akam.net.
edgekey.net.	172800	IN	NS	a16-65.akam.net.
edgekey.net.	172800	IN	NS	a18-65.akam.net.
edgekey.net.	172800	IN	NS	a28-65.akam.net.
edgekey.net.	172800	IN	NS	al3-65.akam.net.

13 NS records with accompanying A/AAAA records

ai Experience the Edge

How do recursive resolvers choose among delegations?

Specific resolver software in the lab

Yu, Yingdi, et al. "Authority server selection in DNS caching resolvers." *ACM SIGCOMM Computer Communication Review* 42.2 (2012): 80-86.

Probing resolvers on the Internet

Müller, Moritz, et al. "Recursives in the wild: engineering authoritative DNS servers." *Proceedings of the 2017 Internet Measurement Conference*. ACM, 2017.

Resolvers on the Internet with real traffic

This talk...

Reasons why we want to know

1. Informs decisions made in authoritative nameserver deployments

2. Knowing the limitations in common behavior among recursive resolvers can motivate improvements in that behavior

- 10min of Akamai's authoritative DNS servers' logs
 - Queries for CDN domain edgekey.net
 - IPv4 traffic only
 - Assume latency stable over short interval
- Repeated experiments
 - Different times
 - Different CDN domains
 - Similar findings
- Ping each source IP address in logs of authoritative DNS server

- 890k source IP addresses
 - ~89k with \ge 90 DNS queries
- 66% of resolvers with ≥ 90 DNS queries responded to ping

- 890k source IP addresses
 - ~89k with \ge 90 DNS queries
- 66% of resolvers with ≥ 90 DNS queries responded to ping

Assuming uniform distribution, >1% chance of not sampling all 13 delegations, Account for 16% of all DNS traffic logged 90% addresses of recursive resolver IP % 0-89 >360 90-179 180-269 270-359 number of queries logged

- 890k source IP addresses
 - ~89k with \ge 90 DNS queries
- 66% of resolvers with ≥ 90 DNS queries responded to ping

Assuming uniform distribution, >1% chance of not sampling all 13 delegations, Account for 16% of all DNS traffic logged 90% addresses of recursive resolver IP Focus on these 10% first, we'll come back to the others % 0-89 90-179 180-269 270-359 >360 number of queries logged

of delegations used

- 1. 25% of resolvers query all delegations
- 2. No obvious limit on the number of delegations used

Uniform distribution of queries among delegations

- Use χ^2 test for uniformity in queries per delegation
 - ~1.7% resolvers potentially uniform
- Assume that non-queried delegations are excluded and that resolver uniformly selects among queried subset
 - ~6.7% resolvers potentially uniform
- Bounded, real answer likely between

Resolvers using a single delegation for nearly all traffic

- Choice may be random or by latency
- 5% only ever queried a single delegation
 - Cannot tell whether using lowest latency delegation
- Nearly ³/₄ of others use the fastest delegation for nearly all traffic

What about the other ~83% of resolvers?

- Neither uniform nor single delegation
- Uneven distribution of queries among the 13 delegations
- Measure of unevenness – Shannon entropy

Example Resolver

• Wide variation in distribution

Clear preference for some delegations over others but degree of preference varies

- Wide variation in distribution
 - Clear preference for some delegations over others but degree of preference varies

Delegation usage dependent upon latency

- Previous research has shown that some recursive resolver software selects delegation by weights inversely proportional to estimated RTT
 - *W* ~ 1/*RTT*
- Relationship may not be linear
- Discovering RTT
 - Each DNS query is an opportunity to measure RTT
 - Un-queried delegations have unknown RTT

20 © 2019 Akamai | Confidential

21 © 2019 Akamai | Confidential

Akamai Experience the Edge

Low latency preference

• Most resolvers show a preference for faster delegations

Low latency preference

• Most resolvers show a preference for faster delegations

Low latency preference

 Most resolvers show a preference for faster delegations

Assumes unused delegations were previously observed to be high latency

Delay added to resolutions

- Not using the fastest delegation increases resolution time
- Upper bound on impact since some queries may be prefetching

Delay added to resolutions

- Not using the fastest delegation increases resolution time
- Upper bound on impact since some queries may be prefetching

Preventing Cache Poisoning

Spreading queries across delegations adds entropy

•

- Randomizing source port + transaction ID provides ~31-bits of entropy
- Alternatives for adding entropy do not impact performance

Preventing Cache Poisoning

- Spreading queries across delegations adds entropy
- Randomizing source port + transaction ID provides ~31-bits of entropy
- Alternatives for adding entropy do not impact performance

Preventing Cache Poisoning

- Spreading queries across delegations adds entropy
- Randomizing source port+ transaction ID provides~31-bits of entropy
- Alternatives for adding entropy do not impact performance

Achievable by randomizing among 16 source IPs (e.g., resolver "pool")

What about the rest?

- Limited data makes it harder to identify behavior
- Do they behave the same?

Is there anything special about the 90 queries threshold?

- Threshold of 90 queries is somewhat arbitrary
- If resolvers below the threshold behave similar to those above, then observations can be generalized

Is there anything special about the 90 queries threshold?

- Threshold of 90 queries is somewhat arbitrary
- If resolvers below the threshold behave similar to those above, then observations can be generalized

A smaller disjoint set of source IP addresses shows similar distribution in delegation choice

Is there anything special about the 90 queries threshold?

 Preference for lower latency delegations also looks similar

Query rates too low

 Low query rates mean many resolvers will not use the low latency delegations despite algorithms that attempt to identify them

Summary

- <6.7% of resolvers query delegations uniformly
- ~10% of resolvers send nearly all queries to a single delegation
 - Likely the lowest latency delegation
- Remainder attempt to prefer low latency delegations
 - Higher average resolution time over alternatives
 - 60% of resolvers (~3% of DNS traffic) have querying rates low enough that algorithms likely unsuccessful

Suggested improvements

- Authoritative nameserver deployments should strive to offer low latency for all delegations
 - Agrees with findings in other research
- Recursive resolver software can reduce resolution time by using the fastest delegation for the vast majority of DNS queries
 - Probe other delegations rarely
 - Open question: how frequently is good enough?
 - Use other methods for adding entropy to prevent cache poisoning attacks

Thank you! Questions?

Kyle Schomp kschomp@akamai.com

EXTRA Akamai Experience the Edge

