The Modality of Mortality in Domain Names
 An In-depth Study of Domain Lifetimes

Dr. Paul Vixie, CEO
Farsight Security, Inc.

Agenda

1. Introduction \& study details
2. What \% of new domains survive a week?
3. How fast new domains die?
4. Causes of death
5. Impact of new gTLDs, ccTLDs, etc.
6. Summary \& takeaways

Introduction: BIG data

- Passive DNS sensors deployed world-wide
- Data volume: 2TB of streaming data per day
- DNSDB: historical pDNS database since 2010
- Newly Observed Domains (NOD): real-time notifications of newly observed effective second-level domains

Introduction: BIG questions

- Are popular assertions correct?
- "95\% of new domains are junky and malicious"
- "they live nasty, cruel, and short lives"
- "they are quickly destroyed by the registrars"
- "it is all because of the new gTLDs!"
- Why should I care?

Study details: measuring NOD lifecycle

- Idea: measure all NODs during their first 7 days of life
- data cleanup: drop wildcard TLDs (e.g. .pw) and incomplete measurements
- For each NOD (e.g. domain.com), repeatedly query:
- delegator: usually the TLD name server (e.g. a.gtld-servers.net)
- authoritative NS: the server delegated for the zone (e.g. ns.domain.com)
- DNSBLs: Spamhaus, SURBL, Swinog URIBL
- Make 20 repetitions per NOD in increasing time intervals
- $0 \mathrm{sec} .,+1024 \mathrm{~s}$ ($\sim 17 \mathrm{~min}$), +2048 s ($\sim 34 \mathrm{~min}$), +4096 s ($\sim 68 \mathrm{~min}$), ..., 7 days
- Consider only the first cause of domain death

Background: Effective Second-Level Domains

e.g. for FQDN = lb5.azure-app.cloudapp.net

- Theory:
-- Top-Level Domain (TLD):
-- Second-Level Domain (SLD):

```
.net
```

cloudapp.net

- Practice:
-- effective TLD:

```
.cloudapp.net
azure-app.cloudapp.net
```

More info: see https://publicsuffix.org/

Background: NOD vs. NOH

- NOD: Newly Observed Domains
- effective SLDs, e.g. example.com
- use case: protecting brands
- March 2018 avg: >2 NODs / sec, or >150K NODs / day
- NOH: Newly Observed Hosts
- FQDNs (hostnames), e.g. printer4.example.com
- use case: detecting domain shadowing
- March 2018 avg: >150 NOHs / sec, or >12,000K NOHs / day

What \% survives?

New Domains: dead vs. alive per day

- Evaluating 23.8M NODs (after cleanup - slide 5)
- Time span: 11/2017-05/2018
- 21.6M survived (90.7\% of all NODs)
- 2.2M "dead" in under a week (9.3\% of all NODs)

How fast do they die?

(drill-down into 2.2M NODs)
New Domains: time until dead

- "The newer the domain, the more likely to die really fast
- Majority will die in under 5 hours
- $>60 \%$ will die in under 24 hours
- Three "modes" in mortality rates: 0-2h 1-1.5d 4-4.5d

Causes of death

(only the first one)

- Blacklisting is the major cause (6.7\% of NODs)
- Delegators (TLDs) are the second largest cause (2.5\% of NODs)
- NODs are rarely "killed" at the authoritative NS level (0.2\% NODs)
- Each cause has different time characteristics

New Domains: causes of death

Intersections

(ignoring which was the first)

Blacklisting kills fast

(drill-down into 147,400 NODs)

- In most cases, DNSBL will effectively kill a NOD in <1h
- >79\% of NOD blacklisting happens in the first 24 hours
- No peaks, simple distribution

Deaths at delegators

(drill-down into 55K NODs)

- Huge peaks at ${ }^{\sim} 1 \mathrm{~h}, \sim 1.5 \mathrm{~d}, \sim 4 \mathrm{~d}$ - impact of automated procedures?
- Delegators are much slower than DNSBLs: median ~2.2 days
- Only <22\% deleted in <24h

New Domains: time to death (delegators)

Authoritative NS

(drill-down into 4,400 NODs)

- Huge peak around 4 days, smaller around 12 h
- Deaths at authoritative NS rare \& slow: median ~ 3.7 days
- <27\% of deaths at auth NS happen in <24h

New Domains: time to death (auth NS)

Impact of TLD Type

- Almost $1 / 5$ of new gTLD domains die fast, usually due to blacklists
- Domains under Legacy TLDs usually die at the delegator
- 6.2% of domains in ccTLDs die fast, but these include .tk, .gq, etc.
- Domains in IDN and sponsored TLDs least likely to die fast (<2.5\%)

New Domains: death rate vs. TLD group

New Domains: top 25 gTLDs by death rate

New Domains: top 25 Legacy TLDs by death rate

New Domains under .net: causes of death

New Domains under .com: causes of death

New Domains: top 25 ccTLDs by death rate

New Domains under .tk: causes of death

New Domains under .cc: causes of death

Summary \& Takeaways

- NOD death rate varies among TLDs, 8.4% on average
- ...but some TLDs have >50\% death rate
- Majority of NOD deaths happen in <5h on average
- ...but blacklists kill in <2h
- Blacklisting is the main cause of NODs becoming effectively dead
- delegators seem to use automated procedures ($>1 \mathrm{~h},>1 \mathrm{~d},>4 \mathrm{~d}$)
- NODs are rarely killed at their authoritative NS (0.2% avg.)
- Domains under the new gTLDs are much more likely to die fast ($\sim 1 / 5)$

