
The road to the Ultimate Stub-resolver
Olafur Gudmundsson & Pavel Odintsov



Short history of stub resolvers?
It came to live as _res as part of BSD 4.1 OS, it was a simple lookup mechanism that could look up records. 
Later “higher” level calls like getaddr() came. Stub resolvers traditionally come as part of “standard” library of the 
operating system. 



Capabilities: almost none 

● Looks up recursor from configuration
● Sets RD bit on query
● Waits for answer 
● may retry
Assumptions: One of everything
★ network connection
★ namespace 
★ Address
★ Location

 extern struct __res_state _res;

       int res_init(void);

       int res_query(const char 
*dname, int class, int type,
                  unsigned char 
*answer, int anslen);

       int res_search(const char 
*dname, int class, int type,
                  unsigned char 
*answer, int anslen);

       int res_querydomain(const char 
*name, const char *domain,
                  int class, int type, 
unsigned char *answer,
                  int anslen);

       int res_mkquery(int op, const 
char *dname, int class,
                  int type, const 
unsigned char *data, int datalen,
                  const unsigned char 
*newrr,
                  unsigned char *buf, 
int buflen);

       int res_send(const unsigned 
char *msg, int msglen,
                  unsigned char 
*answer, int anslen);



Over the years: better interface

Slightly higher level calls (POSIX)
- One RRset at the time 
- Limited number types supported 

Object oriented interfaces
- Generally did not support unknown 

types

#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyname(const 
char *name);

#include <sys/socket.h>       /* for 
AF_INET */
struct hostent *gethostbyaddr(const 
void *addr,socklen_t len, int type);

void sethostent(int stayopen);
void endhostent(void);

void herror(const char *s);

const char *hstrerror(int err);

       /* System V/POSIX extension */
struct hostent *gethostent(void);

       /* GNU extensions */
struct hostent *gethostbyname2(const 
char *name, int af);
int gethostent_r( struct hostent *ret, 
char *buf, size_t buflen, struct 
hostent **result, int *h_errnop);

int gethostbyaddr_r(const void *addr, 
socklen_t len, int type,
struct hostent *ret, char *buf, size_t 
buflen, struct hostent **result, int 
*h_errnop);

int gethostbyname_r(const char *name, 
struct hostent *ret, char *buf, size_t 
buflen, struct hostent **result, int 
*h_errnop);

int gethostbyname2_r(const char *name, 
int af, struct hostent *ret, char 
*buf, size_t buflen,struct hostent 
**result, int *h_errnop);



Around 2000
Language specific libraries

- DNSjava, DNSpython 
- Got more functionality
- Interactive operations 
⇒ did not influence standard OS 
libraries

Explosion in DNS “servers”
BIND-9, Nominum, MS, 
DNSmasq …….. 

Few new resolvers



20xx more libraries: server and 
application building blocks 

ldns 
Libunbound
getDNSapi 
Miekg Go
…..  



What is the problem? 



Almost nothing

No caching of answers
No memory of upstreams
    Repeated queries 
    First address gets all questions
    Blocking 

Lots of stupid apps send 
queries to 
a.root-servers.net



DNS stub crapware

Built on top 
● of bad API’s

○ No support for “modern” types 
only A, MX, AAAA, NS, SOA, TXT

○ SRV usage is not feasible 
Living in the past i.e. hostages of old 
mistakes
Makes live horrible for applications!!!

AAAA rollout to OS’s is 
almost complete 
→ type defined in 1995

SPF failed due to some 
mail servers not being able 
look up SPF type 



Not all devices equal 

Setup Complexity

M
o
b
i
l
i
t
y



Resolving at speed



Problem: Make services faster

Cloudflare CDN is reverse proxy: 
Web Caching, DNS, SSL, optimizations, 
DoS protection, WAF, ...

Eyeballs → CF metals 
CF metals → Customer Origins 

React fast to changes: 
Max TTL  applied 

Recover fast from failures:
Short TTL used 

Dyn Attack was a disaster 
for shared customers

 



Problem: Make services faster

Cloudflare DNS metals resolution:
V0: 8.8.8.8 
v1 : PowerDNS resolver on each metal
V2: Unbound on each metal

V3: Tiered Unbound 
V4: <wait> 

V0 easy and simple but 
slow

V1 worked for a while 

V2: worked well for small 
sites; scaling issues 

V3: Scaled and ,uch faster 

V4: more reliable, 
scaleable and faster



Recursive resolver on each host

Problems: 
● Very poor cache locality
● prefetch “unused” 
● Complex maintenance (all machines 

resolve all domains)
○ Inconsistent behaviors
○ Hard to debug customer problems

 

Some TLD’s are bad in 
certain geographical area’s 

ccTLD’s  NS’s “far” from 
sites using them. 

Not everyone is using 
Anycast

Routing is strange 

Network providers are 
sometimes unreliable 

Rate Limits triggered



General DNS issues to overcome 

Frequently in “discovery” mode
● Infrequent queries to Authorities 

with large NS sets ⇒ 
no RTT history established 

Hostage of slow Authority or “parental” 
domains
● Question of “safety” vs “fast” 
  

Scatter of queries result of 
Kaminski bug defenses

Does resolver have 
multiple addresses to use 
as query addresses ?

Until recently no user 
choice between operating 
modes  



Tiered Unbound Recursor 

● 3 metals (unbound-Upper) in recursion 
mode others in forward-first mode 
○ For safety reasons

● Uppers answer on anycast addresses
● Unbound-upper has higher maxTTL 

than -lower 
○ To encourage prefetching 



Tiered setup 

Metal                         Network



Tiered Unbound deployed
Needed to bring down site 
to enable 

Instant speedup 
Less inconsistency 

One customer complained 



Issues encountered #1

Lack of upstream monitoring/health checks
Unpredictable 
● upstream selection logic
● blacklisting for upstreams in case of 

issues (SERVFAIL / timeout / Refused)
● behaviour with "forward-first" when 

-Upper server(s) blacklisted

Addressed many issues by 
adding reporting

Started using the 
command interface to 
unbound more and more 



Issues encountered #2 

● Lack of clear logging about reasons 
for SERVFAIL
○ No ways to distinguish Upstream 

or Auth DNS failures (SERVFAIL 
for both)

● Unbound reuses same timeouts for 
forward servers as for auth DNS.
○ Not suitable for LAN

Added PCAP interface that 
feeds queries to our 
logging infrastructure 

Still hard to debug 
SERVFAIL (14 different 
locations set return code) 



Issues encountered #3

Anycast can be hard to debug
Using NAT to forward 127.0.0.1/53 to 
127.0.0.1/5353 was a bad idea 
Upgrades required taking POP off-line
Integrating into Logging infrastructure 
was a challenge 

solved by Pcap
Cache hit rate not as high as we hoped  

We made mistakes 

NAT must die 

All applications should talk 
directly to Stub only 
system services should use 
system-stub 

Logging and metrics !!! 

Debug tools 

KSK roll in Oct 2017 might 
have been a failure due 
singular reliance on 
RFC5011 and restarts of 
Upper on random 
machines 



The good 

● Unbound is a great resolver for 
external resolution 
○ in particular on “hostile” networks 

!! it never gives up.
● It hid from us all the EDNS0 breakage 

at some performance cost; due to 
our short maxTTL’s



V4: DNSdist → Unbound-upper



Selection process
Desires:

- Upper selection
- Work around 

failures
- Good logging 
- Reliable 
- Robust 
- DNS compliant 
- Open Source
- Not Abandon ware
-

- Unbound is not suitable as metal DNS provider
- Looked at Bind, Knot, PowerDNS ⇒ same issues
-  
- Write our own ? 
- dnsdist was different 
-
- Undo Anycast
- Easy to apply policies 



dnsdist good features
Missing: 

- Prefetching, using 
TTL overwrite to 
overcome 

- DNSSEC: we trust 
Unbound-Upper to 
do it so not needed

-
● Query distribution by name
● Quick reaction to failures
● Does not confuse timeout vs Servfail 
● Fast, reliable, easy to extend
● Policy interface 
● DoT, load balancing, rate limiting   



Thinking outside the box

Dnsdist sold as DNS Load Balancer
But it is basically Traffic steering with 
caching ⇒ what we wanted from -lower

Exactly what all stub resolvers should have!  
Perfect as local client on all systems that 
forward queries to resolvers



Design for CF colo’s 
Scaled Uppers from 3 to 
fraction of colo size 



Deployment process
Compare results
Logging and metric parity 
Worked with PowerDNS 
Developers to extend and 
fix issues we uncovered 

Conservative deployment 
plan, 

Deployment done a quiet 
periods 

1. Run in test colo on select metals
2. Integrate into infrastructure 

a. Prometheus 
b. Logging 
c. Dashboards

3. Deploy to small location 
4. Deploy to “hostile” location
5. Global rollout small .. large sites 



Switching to DNSdist #1



Effect on Upper



Effect on RRDNS



MaxTTL change 90 → 3607 
3607 is a prime selected to 
maximize prefetching



The result 

● Faster
● Fewer problems

Unbound and dnsdist are both 
great at what they do well  !!!



?


