28

CLOUDFLARE

The road to the Ultimate Stub-resolver

Olafur Gudmundsson & Pavel Odintsov

Short history of stub resolvers?

It came to live as _res as part of BSD 4.1 OS, it was a simple lookup mechanism that could look up records.
Later “higher” level calls like getaddr() came. Stub resolvers traditionally come as part of “standard” library of the
operating system.

Capabilities: almost none

Looks up recursor from configuration
Sets RD bit on query

Waits for answer

may retry

Assumptions: One of everything

network connection
namespace
Address

Location

22

)
CLOUDFLARE'

* Xt

Over the years: better interface

Slightly higher level calls (POSIX)

- One RRset at the time
- Limited number types supported

Object oriented interfaces
- Generally did not support unknown

types

-

CLOUDFLARE’

Around 2000
Language specific libraries

- DNSjava, DNSpython
- Got more functionality
- Interactive operations

= did not influence standard OS
libraries

-

CLOUDFLARE’

Explosion in DNS “servers”
BIND-9, Nominum, MS,
DNSmasq

Few new resolvers

20xx more libraries: server and
application building blocks

ldns
Libunbound
getDNSapi
Miekg Go

LLLLLLLLLLL

What is the problem?

Almost nothing

No caching of answers

No memory of upstreams
Repeated queries

First address gets all questions
Blocking

CLOUDFLARE

DNS stub crapware

Built on top

e of bad API's
o No support for “modern” types
only A, MX, AAAA, NS, SOA, TXT
o SRV usage is not feasible
Living in the past i.e. hostages of old
mistakes
Makes live horrible for applications!!!

28

CLOUDFLARE’

AAAA rollout to OS's is
almost complete
— type defined in 1995

SPF failed due to some
mail servers not being able
look up SPF type

Not all devices equal

Setup Complexity

<~ ———lbo =z

22

CLOUDFLARE’

Resolving at speed

Problem: Make services faster

Cloudflare CDN is reverse proxy:

Web Caching, DNS, SSL, optimizations,
DoS protection, WAF, ...

Eyeballs — CF metals
CF metals — Customer Origins

8-

CLOUDFLARE’

React fast to changes:
Max TTL applied

Recover fast from failures:
Short TTL used

Dyn Attack was a disaster
for shared customers

Problem: Make services faster

Cloudflare DNS metals resolution:

VO: 8.8.8.8

v1 : PowerDNS resolver on each metal
V2: Unbound on each metal

V3: Tiered Unbound
V4. <wait>

8-

CLOUDFLARE’

VO easy and simple but
slow

V1 worked for a while

V2: worked well for small
sites; scaling issues

V3: Scaled and ,uch faster

V4: more reliable,
scaleable and faster

Some TLD's are bad in

Recursive resolver on each host certain geographical area's

ccTLD's NS's “far” from
sites using them.

Problems:

e Very poor cache locality
¢ prefEtCh “unused" Network providers are
e Complex maintenance (all machines Rl e

resolve all domains) o e e
o Inconsistent behaviors
o Hard to debug customer problems

Not everyone is using
Anycast

Routing is strange

8-

CLOUDFLARE’

Scatter of queries result of

General DNS issues to overcome Kaminski bug defenses

Does resolver have
multiple addresses to use
as query addresses ?

Frequently in “discovery” mode
Until recently no user

e Infrequent queries to Authorities cholce hetifeehopEiailig
with large NS sets =
no RTT history established

Hostage of slow Authority or “parental”
domains

e Question of “safety” vs “fast”

28-

CLOUDFLARE’

Tiered Unbound Recursor

e 3 metals (unbound-Upper) in recursion
mode others in forward-first mode
o For safety reasons

e Uppers answer on anycast addresses

e Unbound-upper has higher maxTTL
than -lower

o To encourage prefetching

8-

CLOUDFLARE’

Tiered setup

Metal Network

solution request domain.tid §

Unbound upper #1

8

KT/Qs Unbound Lower Unbound upper #2

Origin lookup .
for domain-source.tid Response: 101.10.22.33

Response: CNAME to domain.tid :'DNS ik

Resolution request: domain.tid
DNS
Tl <

Record lookup domain-source.tid 4+

v

Response: 101.10.22.33 Resolution request domain.tid

Re: ion request domain.tld E

Unbound upper #3

Nainx

8-

CLOUDFLARE’

Tiered Unbound deployed

-

2.5 kpps

2.0 kpps

1.5 kpps

1.0 kpps

500 pps

0 pps

1.3 kpps

1.0 kpps

750 pps

500 pps

250 pps

#% Unbound latency (per-colo) -

> unbound + unbound-upper ~

unbound (latency histogram)

AAANA 4 4 A A
VWA A AR
VAANAAAMAN AN N

o

22

CLOUDFLARE’

< Zoom Out

> O now-500m to now-2m

B Wiki

= DNS dashboards

P e s
4-8ms -2.197 kpps
8-16ms -7.999 kpps
16-32ms -3.368 kpps
32-64ms -6.943 kpps
64-128ms -10.225 kpps
128-256ms -5.231 kpps
256-512ms -2.103 kpps
512-1024ms -651 pps
1-2s -240 pps
2-4s -102 pps
4-8s -26 pps
8-16s -12 pps

0-1us
8-16us
16-32us
32-64us
64-128us
128-256us
256-512us
512-1024us
1-2ms
2-4ms
4-8ms

Needed to bring down site
to enable

Instant speedup
Less inconsistency

One customer complained

Addressed many issues by

Issues encountered #1 adding reporting

Started using the
command interface to

LaCk Of upStream monltorlng/health ChECkS unbound more and more
Unpredictable

e upstream selection logic

e Dblacklisting for upstreams in case of
issues (SERVFAIL / timeout / Refused)

e behaviour with "forward-first" when
-Upper server(s) blacklisted

-

CLOUDFLARE’

Issues encountered #2

e Lack of clear logging about reasons
for SERVFAIL
o No ways to distinguish Upstream
or Auth DNS failures (SERVFAIL
for both)
e Unbound reuses same timeouts for
forward servers as for auth DNS.
o Not suitable for LAN

28-

CLOUDFLARE’

Added PCAP interface that
feeds queries to our
logging infrastructure

Still hard to debug
SERVFAIL (14 different
locations set return code)

Issues encountered #3

Anycast can be hard to debug

Using NAT to forward 127.0.0.1/53 to
127.0.0.1/5353 was a bad idea

Upgrades required taking POP off-line

Integrating into Logging infrastructure
was a challenge

solved by Pcap

Cac‘th hit rate not as high as we hoped

CLOUDFLARE’

We made mistakes

NAT must die

All applications should talk
directly to Stub only
system services should use
system-stub

Logging and metrics !l

Debug tools

KSK roll in Oct 2017 might
have been a failure due
singular reliance on
RFC5011 and restarts of

Upper on random
machines

The good

e Unbound is a great resolver for
external resolution
o in particular on “hostile” networks
Il'it never gives up.
e It hid from us all the EDNSO breakage
at some performance cost; due to
our short maxTTL's

8-

CLOUDFLARE’

V4. DNSdist — Unbound-upper

Desires:

Selection process " Upper slecton

Work around

failures

Good logging

- Unbound is not suitable as metal DNS provider "ol

- Looked at Bind, Knot, PowerDNS = same issues - DNS compliant
- Open Source
Not Abandon ware

- Write our own ?
- dnsdist was different

- Undo Anycast
- Easy to apply policies

-

CLOUDFLARE’

Missing:
- Prefetching, using
TTL overwrite to
overcome
DNSSEC: we trust
Unbound-Upper to

Query distribution by name do it so not needed
Quick reaction to failures '
Does not confuse timeout vs Servfail
Fast, reliable, easy to extend

Policy interface

DoT, load balancing, rate limiting

dnsdist good features

-

CLOUDFLARE’

Thinking outside the box

Dnsdist sold as DNS Load Balancer

But it is basically Traffic steering with
caching = what we wanted from -lower

Exactly what all stub resolvers should have!

Perfect as local client on all systems that
forward queries to resolvers

-

CLOUDFLARE’

Design for CF colo’s

P I e e R T R

Consistent hashing
iy aaa.zone.tld

Health check ynbound upper #1

bbb.zone.tid q ~ Internet

»|
Health check 5
Unbound upper #2

Health check
resolution)
only if all Uppers failed

Unbound upper #...

———————— —— —— —

..

CLOUDFLARE’

Scaled Uppers from 3 to
fraction of colo size

Deployment process

1. Runin test colo on select metals
2. Integrate into infrastructure
a. Prometheus
b. Logging
c. Dashboards
3. Deploy to small location
4. Deploy to “hostile” location
5. Global rollout small .. large sites

-

CLOUDFLARE’

Compare results

Logging and metric parity
Worked with PowerDNS
Developers to extend and
fix issues we uncovered

Conservative deployment
plan,

Deployment done a quiet
periods

Total requests per metal

P VRV VN
i 7Y
d

0
12/1200:00 12/1204:00 12/1208:00 12/1212:00 12/1216:00 12/1220:00 12/1300:00 12/1304:00 12/1308:00 12/1312:00

CNAME flattening Ilatencies p95S

ms
ms

ms

mm
mm
m
m
O llllllllll 11T [] | Ill'lllllll

12712 O00:00 127172 0800 127172 16:00 12713 00: 12713 O08:00

CLOUDFLARE

Effect on Upper

Total requests total Cache efficiency

y -

12.0K

A
M»MN \‘\'Wﬁ”m’\ﬁwwhw N o o N (A ey
v i T [M
10.0K / '
)/'v'//v

W

9.0K

11.0K

8.0K

7.0K 0
12/1200:00 12/1204:00 12/1208:00 12/1212:00 12/1216:00 12/1220:00 12/1300:00 12/1304:00 12/1308:00 12/1312:00 12/1200:00 12/1204:00 12/1208:00 12/1212:00 12/1216:00 12/1220:00 12/1300:00 12/1304:.00 12/1308:00 12/1312:00

Total requests per metal Recursive requests total

AV A M
A o) Wbty

f 'VM\'\

1l -
1

0

12/1200:00 12/1204:.00 12/1208:00 12/1212:00 12/1216:00 12/1220:00 12/1300:00 12/1304:00 12/1308:00 12/1312:00 12/1200:00 12/1204:.00 12/1208:00 12/1212:00 12/1216:00 12/1220:00 12/1300:00 12/1304:00 12/1308:00 12/1312:00

CLOUDFLARE

Effect on RRDNS

CNAME resolution latency Latency heatmap
+Inf
10.00000 s
5.00000 s
2.00000 s
1.00000 s
100 ms

10ms

1ms

600 s

o] | | M
v

SUPUSIS S U= 100 ps

12/12 00:00 12/12 04:00 12/12 08:00 12/1212:00 12/12 16:00 12/12 20:00 12/13 00:00 12/13 04:00 12/13 08:00

== 99 percentile == 95 percentile == 50 percentile == 75 percentile 12/12 00:00 12/12 06:00 12/12 12:00 12/12 18:00 12/13 00:00 12/13 06:00 12/13 12:0C

CNAME flattening latencies p90 CNAME flattening latencies p95 CNAME flattening latencies p99

200 ms

e T

12/1200:00 12/1204:00 12/1208:00 12/1212:00 12/1216:00 12/1220:00 12/1300:00 12/1304:00 12/1308:00 12/1312:00 12/12 00:00 12/12 08:00 12/1216:00 12/13 00:00 12/13 08:00 2/ 12/12 08:00 12/1216:00 12/13 00:00

CLOUDFLARE

CNAME flattening latencies p95 CNAME flattening latencies p99
700 ms

600 ms

500 ms

300 ms

400 ms
200 ms
N "“' |“| “||||||| i ““
" i |II|||||||I||III|II|II||||II|IIIIIII| . L

14:00 14:30 15:00 15:30 16:00 16:30 14:00 14:30 15:00 15:30 16:00 16:30

Ons

Recursive requests total ~

600

550

500 MWWWNMMWWMMJL\M \JL\/
450 4
400

300
11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30

The result

e Faster
e Fewer problems

Unbound and dnsdist are both
great at what they do well !!!

LLLLLLLLLLL

22

CLOUDFLARE’

