

Interoperability testing
… on live Internet

Petr Špaček • petr.spacek@nic.cz • 2019-05-13

Interoperability: Theory

● Read RFCs

● Implement

● Verify MUST/SHOULD/MAY ...

Interoperability: Reality

● Customers complain

● BIND can resolve _that_ domain, so ...
● You have to resolve it as well

RFC wisdom

RFC 1925: The Twelve Networking Truths

● (1) It Has To Work.

● (3) With sufficient thrust, pigs fly just fine.
However, this is not necessarily a good idea.

● (8) It is more complicated than you think.

● (9) For all resources, whatever it is,
you need more.

Finding a balance

● Remember:

 (3) With sufficient thrust, pigs fly just fine.
However, this is not necessarily a good idea.

Interoperability vs. Knot Resolver

● Make it work

● On real Internet

● RFCs do matter, but ...

● "Fix" domains which matter

● Do not add workarounds
– Unless

● Absolutely
– Necessary

● Focus on real queries

Introducing respdiff

● “response differences”

● Pre-generate queries in wire-format

● Send DNS payload to multiple addresses

● Compare received responses

● Compute statistics

Basic schema

Internet

Knot
Resolver

BIND

orchestr.qprep msgdiff

Query 1
Answer 1

Query 1
Answer 2

respdiff toolchain
Tool Purpose

qprep generate wire-format query (PCAP, text ...)

orchestrator send queries, gather responses

 - alternative dnsjit

msgdiff analyze response differences

diffsum summarize differences

sumcmp compare test summary against reference

Additional tooling

diffrepro test diff reproducibility

sumstat agregate results to create reference

histogram combine latency histograms

respdiff config

[servers]
names = bind, kresd

[bind]
ip = ::1
port = 5301
transport = tcp

[kresd]
ip = ::1
port = 5302
transport = tcp

[diff]
target = kresd
criteria = opcode, rcode,
flags, question,
answertypes, answerrrsigs

[report]
field_weights = timeout,
malformed, opcode,
question, rcode, flags,
answertypes, answerrrsigs,
answer, authority,
additional, edns, nsid

First attempt: two resolvers

● BIND vs. Unbound

● Try to use BIND as reference ...

● Compare all fields in responses

● Way too many differences!

● Load-balancers => differing rdata

● Authority and additional sections are a mess

● Except for NXDOMAIN authority

Second attempt: two resolvers

● BIND vs. Unbound

● Ignore authority and additional sections

● Ignore rdata values in answer section

● Compare sets of present types

● Still ~ 1 % differences

● Dynamic auths?

● Broken auths?

● Too noisy

Third attempt: third resolver

● BIND vs. Unbound vs. Knot Resolver

● Comparison as before (sets of present types)

● Compare BIND vs. Unbound first

● Skip query if BIND vs. Unbound disagree
● Reference = BIND + Unbound

● Actually works

● Filters out too “wild” domains
● First "sieve" to detect major breakage

Three-resolver mode

[servers]
names = bind, unbound, kresd

[diff]
target = kresd

$ diffsum.py

== Differences statistics
manually ignored 0 0.00 % of answers
upstream unstable 1955 0.45 % of answers
not 100% reproducible 0 0.00 % of answers
target disagrees 302 0.07 % of not ignored

Diffsum output
== Field "rcode" mismatch statistics
Expected Got Count % of mimatches
---------- -------- ------- ----------------
NOERROR SERVFAIL 238 78.81
NOERROR NXDOMAIN 6 1.99
SERVFAIL NOERROR 2 0.66

== Field "answertypes" mismatch statistics
Expected Got Count % of mimatches
---------- ------------ ------- ----------------
A 7 2.32
CNAME CNAME AAAA 1 0.33

== Field "rcode", expected 'NOERROR' got 'NXDOMAIN'
 Count Query
 1 webserve-www.dynamicyield.com. A

Post processing: reproducibility
● Often diff is not reproducible

● Tool "diffrepro"

[bind]
restart_script = /usr/local/bin/restart-bind

[unbound]
restart_script = /usr/local/bin/restart-unbound

[kresd]
restart_script = /usr/local/bin/restart-kresd

$ diffrepro.py

diffrepro usage
$ diffsum.py

== Differences statistics
upstream unstable 1955 0.45 % of answers
not 100% reproducible 0 0.00 % of answers
target disagrees 302 0.07 % of not ignored

$ diffrepro.py
$ diffsum.py

upstream unstable 1961 0.45 % of answers
not 100% reproducible 123 0.03 % of answers
target disagrees 173 0.04 % of not ignored

Magic begins here

Post processing: classification
● Classification by hand

● 173 diffs to be classified!

● Different approaches

● focus on "difference"
● focus on "new"
● classify domains by "quality" - DNSViz?
● combination of these

Post processing: looking for new
● Combine results from "reference" runs

● Compare last run with reference

● Tool "sumcmp"

● summary compare

Post processing: differences vs. ref

Key to the violin plot

Post processing: differences vs. ref

Find new diffs

$ diffsum.py --without-ref-failing

== Differences statistics
manually ignored 1129 0.26 % of answers
upstream unstable 826 0.19 % of answers
not 100% reproducible 0 0.00 % of answers
target disagrees 302 0.07 % of not ignored

Classify domains by "quality"
● Idea: DNSViz domains on list

● Categories

● Ok
● Warning
● Error

● Investigate ok first, then warning ...

● Implementation difficulties

Links
● https://gitlab.labs.nic.cz/knot/respdiff

● https://gitlab.labs.nic.cz/knot/respdiff/
tree/master/README.rst

● https://gitlab.labs.nic.cz/knot/respdiff/
tree/master/doc

Open problems
● Automatic classification

● Reproducibility

● in face of ever changing Internet?

