Hyper-Hyper-Hyper-Local Root

Ray Bellis, Internet Systems Consortium, Inc.
@raybellis
Local Root Mirroring

- RFC 7706 too prescriptive (IMHO)
- There’s no need to put the root zone in every resolver
- A single local root server instance can support large numbers of resolvers
Fast Root ("froot")

- Root zone only
- Pre-compiled answers, with DNSSEC
- Pre-calculated compression offsets
- Linux raw sockets
- Saturate a 10GE NIC with four x86 CPU cores
Zone Support

• No .arpa or root-servers.org zone support
 • MUST NOT be used on a root server Anycast address
 • Use “static-stub” support in BIND to forward root zone queries
Pre-compiled Answers

• Root zone is loaded and parsed

• Every possible answer is generated, assuming minimum possible valid query length (per QNAME Minimisation)

• Data structure allows for closest-match for serving relevant NSEC3 records

• Each answer record contains a table of the wire offset of every compression pointer
Raw Sockets

- To avoid interference from the kernel, uses a separate IPv4 address
 - Requires answering ARP requests
 - Also responds to ICMPv4 ping
- Also does IPv6 “link local”
 - Neighbour Discovery
 - ICMPv6 ping
TCP

• Full TCP is non-trivial

• implements Geoff and George’s “Stateless TCP”
 • “Good enough” TCP support for low-loss local networks
 • Not capable of serving AXFRs

• It works!

• It might still be a bad idea…
Fast Root on a Raspberry Pie

- 15,000 QPS on a RPi 3B
 - Probably more on a 3B+
- 13 MB RAM footprint
- 43 MB SD card image built with Nard SDK
 - Edit the config file to assign static IP
 - Turn it on!
Fast Root on a Raspberry Pi

- 15,000 QPS on a RPi 3B
 - Probably more on a 3B+
- 13 MB RAM footprint
- 43 MB SD card image built with Nard SDK
 - Edit the config file to assign static IP
 - Turn it on!
Source Repos

https://github.com/isc-projects/froot-src

https://gitlab.isc.org/isc-projects/froot-pi

“isc” branch - pre-compiled binaries coming soon
Linux Performance Considerations

Multi Queue NIC Handling

Raw Sockets and CPU affinity
Multi-Queue NICs

- High speed NICs have multiple RX and TX queues
- Optimum RX performance from one queue IRQ assigned per CPU core
- NICs use a hash on the packet header to chose the queue
- Insufficient packet header entropy causes queue imbalance
- Queue imbalance negatively impacts performance
Linux IPv4 Packet Steering

- Use multiple sockets with `SO_REUSEPORT` (Kernel 3.9+)
 - Let the kernel wake up a single listener
- Assign sockets to cores (Kernel 4.4+)
 - Let the kernel wake up the *right* listener
 - `setsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu, sizeof(cpu));`
Linux Raw Packet Steering

• Use packet fanout so packets only go to one socket

• Use `PACKET_FANOUT_CPU` mode:

 “selects the socket based on the CPU that the packet arrived on”
New Linux Tools

dnsgen

ethq
dnsgen

- Raw (AF_PACKET) sockets - so Linux only
- 4096 source ports per thread (default)
 - High entropy ensures good queue distribution on server
- Loads dnsperf files, but prefers pre-compiled binary packet format
- Includes a DNS packet echo server for benchmarking

https://github.com/isc-projects/dnsgen
• **top for NICs**

• Displays real-time per-queue NIC statistics - show queue imbalances

• Uses Linux-only `ethtool` API

• Needs per-driver support - please contribute sample `ethtool` output

• https://github.com/isc-projects/ethq
Questions?