


Building and Deploying a 
new Nameserver
Manu Bretelle
Production Engineer DNS OARC 31 / 2019-10-31



DNS@FB History



• Using tinydns since 2012
• IPv6 support
• CIDR based location matching
• EDNS Client Subnet location matching
• Multiple Map support

DNS@FB
History



• Resolver-based “views”
• EDNS Client Subnet “views”

DNS@FB
Feature Requirements



• Simple to generate views
• Simple to configure
• Simple to deploy DB updates
• Query Logs
• Service Health Metrics
• Easy to integrate in our infrastructure.

DNS@FB
Operational Requirements



• Simple
• Efficient
• opinionated
• line-based zone format
• distributing data.cdb is simple

DNS@FB
What’s great about tinydns?



• Not easy to extend
• Simplicity comes with trade-offs
• Lack of tests and modern programming paradigms
• Lot of global/static variables
• Hard for engineers to ramp up

DNS@FB
Why moving off tinydns?



Searching alternatives



Open Source

Resolver View ECS View
BIND Yes No
Knot No (until 2.7.0) No (until 2.7.0)
NSD No No
PowerDNS Yes (geoip backend) Yes (geoip backend)

January 2018



Had they been available solutions, we would have 
needed to make sizeable changes to our existing 
pipeline.
Deploying a .cdb works well for us
we have plenty of tooling available that does sanity 
checking and operational work for us.

What IF?
Operation



What then?





• CoreDNS
• Knot DNS
• PowerDNS

Plug your own logic in
aka building a module





• How easy to get started with it?
•What is the learning curve?
•How easy to build/test?

• How familiar are engineers with the 
language/library?

• How easy would it be to integrate
in-house?

Picking up a solution
Building a Proof of Concept



• Excellent plugin tutorial
• miekg/dns:
•already used in our DNS pipeline
•simple to use

• Go tooling makes building/running/testing easy

Picking up a solution
CoreDNS



Development



PoC
Get something working 
to demonstrate 
feasibility.

Production-ize
Logging, metrics, 
refactoring, 
performance.

From Proof of Concept To Prod
Compatibility
Support feature parity.
same input, same output 

Integration
Make it work internally, 
remove unnecessary 
dependencies.

1

2

3

4



• 3 weeks times
• Read from CDB
•Map/Query matching
•Location for Resolver/ECS
•Unpack RDATA from CDB

• unittests, unittests, unittests, unittests
• dirty^Wquick hacks

Proof of Concept
aka get some answers



Proof of Concept
aka get some answers



• 2 weeks time
• Feature parity with
tinydns

• Validate replaying queries against tinydns and fbdns
• Find bugs, fix them, unittest them, rinse and repeat
• Would work if taking prod traffic

Compatibility
aka “actually works correctly”



• 2 weeks time
• Get rid of CoreDNS
dependencies

• Build standalone UDP/TCP listening layer
• Reuse CoreDNS’s ServeDNS entrypoint and helpers

Integration
aka “use internal toolchain” 



• 1 month time
• Query Logging
• Metrics
• refactoring
• profile, find hotspots, optimize
• rinse/repeat

Production-ize
aka “prime time”



Deployment



• Focus on `b` nameservers
• Leave `a` alone
• Start small
• Push early in the week
• Build confidence
• Deploy to more POPs

Deployment Strategy



• Couple of hosts in a cluster
• Eventually a full cluster
• Let it bake 1 week
• Look for traffic change
• Check performance

Test the water
Slow Start



How does it compare?



• 7 days later
• 1 more cluster
• Let it bake
• Look for traffic change

Ramp it up



• 2 days later
• Deploy to more clusters at 12pm
• Later that day, employees started reporting issues
• Revert to tinydns
• Everyone is happy
• Troubleshoot, unittests, fix

It’s working great!
gogogogogogogo



• Source IP is hard to spoof if you want to receive the 
answer.

• Tests validated answers using ECS

Didn’t you have validating tests?
Yes…. but



What Happened?



• Quickly back to where we were
• Over 2 weeks, rolled to 100% of `b` nameservers
• `a` nameservers
•stayed on tinydns 5 more months
•migrated to fbdns over 2 weeks

Next Monday!
Just keep rolling!



● 2018-03-02 copy coredns/coredns:request/request.go
● 2018-03-21 coredns report “High CPU Load” GH#1625
● 2018-03-22 coredns fix in GH#1629
● 2019-04-30
● 2019-05-01 

1 year later….
Pay the tech debt



• get rid of copy/paste:
•use proper dependency management
•avoid forks, work with upstream

• Keep third-party up-to-date
• Invest in regression detection
• Invest in continuous (staged) rollout
• Invest in Fuzzing

Fixing this
Clean the tech debt



• miekg/dns and CoreDNS
• BIND, Knot, NSD and PowerDNS
• gitlab.isc.org/isc-projects/DNS-Compliance-Testing
• github.com/DNS-OARC/dnsperf

Thank You



Questions


