

Building and Deploying a new Nameserver

Manu Bretelle Production Engineer

DNS OARC 31 / 2019-10-31

- Using tinydns since 2012
- IPv6 support
- CIDR based location matching
- EDNS Client Subnet location matching
- Multiple Map support

DNS@FB Feature Requirements

Resolver-based "views" EDNS Client Subnet "views"

DNS@FB **Operational Requirements**

- Simple to generate views
- Simple to configure
- Simple to deploy DB updates
- Query Logs
- Service Health Metrics
- Easy to integrate in our infrastructure.

DNS@FB What's great about tinydns?

- Simple
- Efficient
- opinionated
- line-based zone format
- distributing data.cdb is simple

DNS@FB Why moving off tinydns?

- Not easy to extend
- Simplicity comes with trade-offs
- Lack of tests and modern programming paradigms Lot of global/static variables
- Hard for engineers to ramp up

Searching alternatives

Open Source January 2018

	Resolver View	ECS View
BIND	Yes	Νο
Knot	No (until 2.7.0)	No (until 2.7.0)
NSD	No	No
PowerDNS	Yes (geoip backend)	Yes (geoip backend

What IF? Operation

Had they been available solutions, we would have needed to make sizeable changes to our existing pipeline. Deploying a .cdb works well for us we have plenty of tooling available that does sanity checking and operational work for us.

What then?

Plug your own logic in aka building a module

- CoreDNS
- Knot DNS
- PowerDNS

Picking up a solution Building a Proof of Concept

 How easy to get started with it? What is the learning curve? •How easy to build/test? How familiar are engineers with the language/library? How easy would it be to integrate in-house?

Picking up a solution CoreDNS

 Excellent plugin tutorial • miekg/dns: already used in our DNS pipeline simple to use

Go tooling makes building/running/testing easy

From Proof of Concept To Prod

3

4

2

PoC

Get something working to demonstrate feasibility.

Production-ize

Logging, metrics, refactoring, performance. Compatibility

Support feature parity. same input, same output

Integration

Make it work internally, remove unnecessary dependencies.

Proof of Concept aka get some answers

- 3 weeks times
- Read from CDB
 - Map/Query matching
 - Location for Resolver/ECS
 - Unpack RDATA from CDB
- unittests, unittests, unittests, unittests
- dirty^Wquick hacks

OB B tests, unittests

Proof of Concept aka get some answers

This is still a POC, but it does support (as in answer somehow correctly) some of the basic A/AAAA queries. Quick benchmark shows it is 3x slower than TinyDNS on a single core,

Compatibility aka "actually works correctly"

- 2 weeks time
- Feature parity with tinydns

- Would work if taking prod traffic

 Validate replaying queries against tinydns and fbdns • Find bugs, fix them, unittest them, rinse and repeat

Integration aka "use internal toolchain"

- 2 weeks time
- Get rid of CoreDNS dependencies
- Build standalone UDP/TCP listening layer

Reuse CoreDNS's ServeDNS entrypoint and helpers

Production-ize aka "prime time"

- 1 month time
- Query Logging
- Metrics
- refactoring
- profile, find hotspots, optimize
- rinse/repeat

Deployment Strategy

- Focus on `b` nameservers
- Leave `a` alone
- Start small
- Push early in the week
- Build confidence
- Deploy to more POPs

Test the water **Slow Start**

- Couple of hosts in a cluster
- Eventually a full cluster
- Let it bake 1 week
- Look for traffic change
- Check performance

How does it compare?

Ramp it up

- 7 days later
- 1 more cluster
- Let it bake
- Look for traffic change

It's working great! gogogogogogogo

- 2 days later
- Deploy to more clusters at 12pm
- Revert to tinydns
- Everyone is happy
- Troubleshoot, unittests, fix

Later that day, employees started reporting issues

Didn't you have validating tests? Yes.... but

- Source IP is hard to spo answer.
- Tests validated answers using ECS

Source IP is hard to spoof if you want to receive the

What Happened?

[fbdns] properly handle IPv6 resolver ip in FindLocation

Author: chantra · Created Apr 19, 2018 · Last Updated Apr 20, 2018 1:43 PM

In the case of ResolverLocation lookup, the logic constructing the net.IPNet was buggy and only affected IPv6. that built that net.IPNet.

excercise the net.IPNet logic and fixes the issue.

- Unittest did cover the IPv6 resolver lookup in DB but were bypassing the part
- This diffs added test cases that confirmed failure, added unittests that
- Unittests are covering resolver location lookup as well as full DNS resolution.

Next Monday! Just keep rolling!

- Quickly back to where we were
- `a` nameservers

 stayed on tinydns 5 more months migrated to fbdns over 2 weeks

Over 2 weeks, rolled to 100% of `b` nameservers

1 year later.... Pay the tech debt

- 2018-03-22 coredns fix in GH#1629
- 2019-04-30

[fbdns] import request.go from coredns Author: jinyuan · Created Apr 29, 2019 · Last Updated Apr 30, 2019 11:03 AM

• 2019-05-01

2018-03-02 copy coredns/coredns:request/request.go 2018-03-21 coredns report "High CPU Load" GH#1625

Production SEVs > some fbdns tasks busy-spinning 1 core

Fixing this Clean the tech debt

- get rid of copy/paste:
 - use proper dependency management
 - avoid forks, work with upstream
- Keep third-party up-to-date
- Invest in regression detection
- Invest in continuous (staged) rollout
- Invest in Fuzzing

Thank You

- miekg/dns and CoreDNS
- BIND, Knot, NSD and PowerDNS
- github.com/DNS-OARC/dnsperf

gitlab.isc.org/isc-projects/DNS-Compliance-Testing

facebook

Questions