Cache Me If You Can: Effects of DNS Time-to-Live

Giovane C. M. Moura^{1,2}, John Heidemann³, **Wes Hardaker**³, Ricardo de O. Schmidt⁴

AMC IMC 2019

Amsterdam, The Netherlands 2019-10-23

¹SIDN Labs. ²TU Delft. ³USC/ISI. ⁴UPF

Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

Caching (Longer TTL) vs Anycast

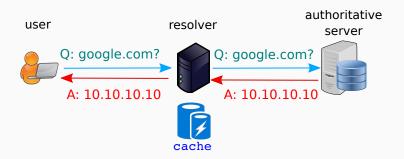
Shorter vs Longer TTLs

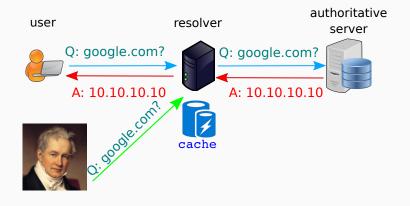
Recommendation and Conclusions

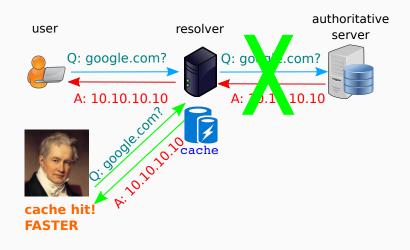
Our research on DNS over the last years

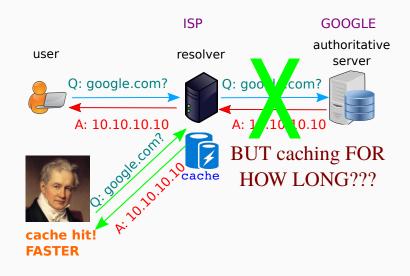
Our research on DNS security/stability:

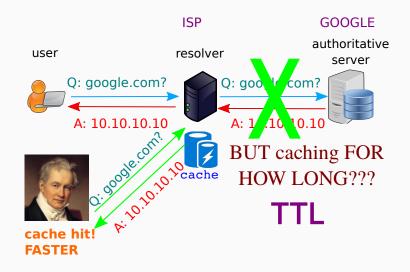
- Anycast and DDoS: IMC 2016 [2]
- Resolvers: IMC 2017 [5]
- Anycast Engineering: IMC 2017 [1]
- Caching and DDoS: IMC 2018 [4]
- Caching and TTL, and performance: IMC 2019 [3]
 - (this paper)

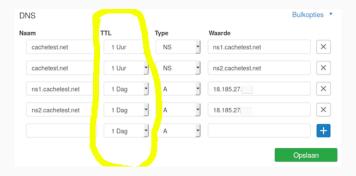

Introduction











- TTL controls caching
 - SIGNAL from auth servers to resolvers: maximum time length
- Caching is VERY important for performance
 - improves user experience (aka happy eyeballs)

And you must set TTLs

• Say you register cachetest.net

What TTL values are good?

Operators:

- are given little guidance today about correct values
- and are resistant to (scared to!) make changes
 - "if it ain't broke don't fix it"

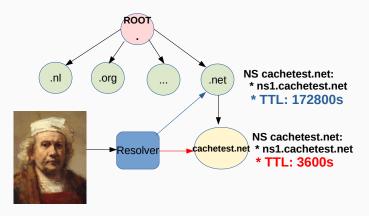
We think we can help

Figure 1: DNS ops chaging TTLs. src: trainworld.be

Our contribution

Our research contributions:

- 1. The effective TTL comes from multiple places
 - Parent authoritative servers
 - Child authoritative servers
 - Both NS and A records (sometimes)
- 2. Currently popular TTLs are unnecesssarily short
 - a. because sometimes multiple places → one is shorter and wins
 - · or operators don't realize the cost
- 3. We show that longer TTLs are MUCH faster
- Our results were adopted by 3 ccTLD
 - for \sim 20ms median latency improvement; 171ms 75%ile


The rest of this talk

- 1. Parent vs Child: which TTLs to resolvers believe?
- 2. NS and A records: are they limited? And bailiwick?
- 3. Real-world variation exists
- 4. Longer TTLs are MUCH better
- 5. Our recommendations

Parent vs Child

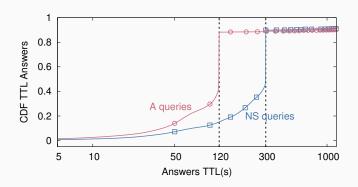
Duplicate info: which one is chosen?

Parent and child TTLs may vary: dig NS cachetest.net

Which TTL will Rembrandt use? Parent (172800s) or child (TTL: 3600s)

Are resolvers parent- or child-centric?

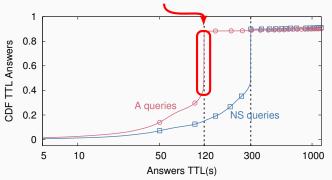
Parent vs Child experiment


Test with experiment on .uy: (2019-02-14)

Parent	NS TTL	172800s
	A TTL	172800s
Child	NS TTL	300s
	A TTL	120s

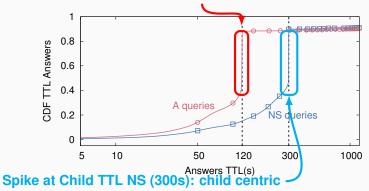
- We guery with 15k Atlas VPs multiple times, every 10min
- We analyze TTL values received at VPs

Most Atlas VPs resolvers are child-centric


Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A queries.

Most Atlas VPs resolvers are child-centric

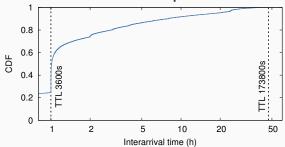
Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A queries.


Spike at Child TTL A (120s): most resolvers are child centric

Most Atlas VPs resolvers are child-centric

Figure 2: Observed TTLs from Atlas VPs for .uy-NS and a.nic.uy-A queries.

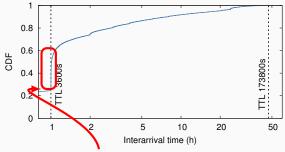
Spike at Child TTL A (120s): most resolvers are child centric



Remember: TTL parents: 2 days

Is centricity true for TLDs and SLDs?

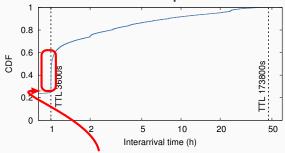
- Test with .nl TLD A records (ns*.dns.nl)
 - TTLs are 3600s (child) vs. 17800s (parent)


Figure 3: Minimum interarrival time of A queries for TLD

Is centricity true for TLDs and SLDs?

- Test with .nl TLD A records (ns*.dns.nl)
 - TTLs are 3600s (child) vs. 17800s (parent)

Figure 3: Minimum interarrival time of A queries for TLD

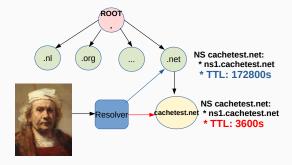

Spike at Child TTL A (3600s): confirm child centric for TLD

We confirmed this with a second-level domain (paper

Is centricity true for TLDs and SLDs?

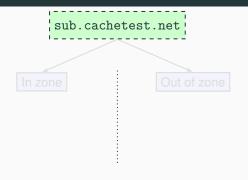
- Test with .nl TLD A records (ns*.dns.nl)
 - TTLs are 3600s (child) vs. 17800s (parent)

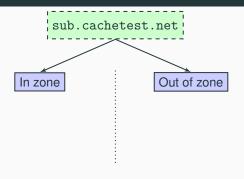
Figure 3: Minimum interarrival time of A queries for TLD

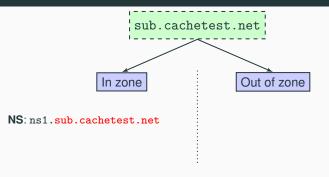


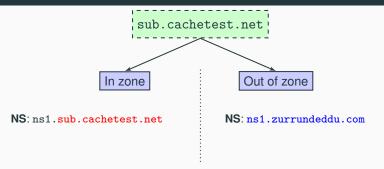
Spike at Child TTL A (3600s): confirm child centric for TLD

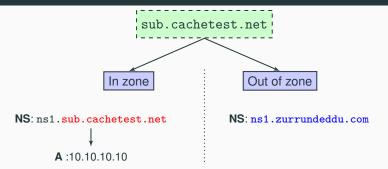
We confirmed this with a second-level domain (paper)

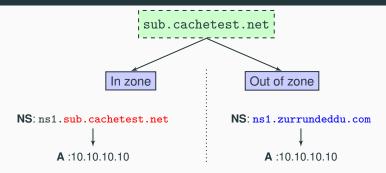

Most resolvers will use child TTLs

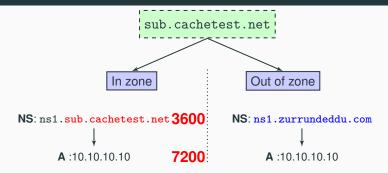

- Rembrant (and users) mostly use child TTLs
- The Child TTL controls caching (most times)

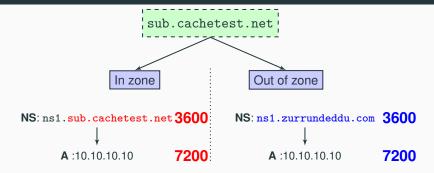


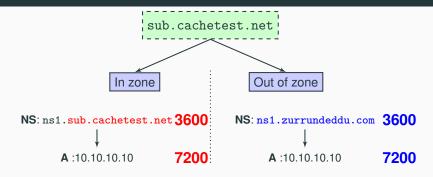

Which TTL will Rembrandt use? Parent (172800s) or child (TTL: 3600s)

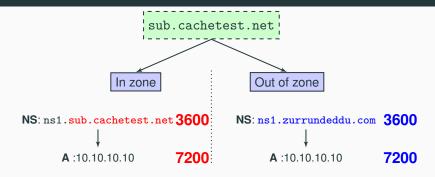

Zone configurations and Effective TTL

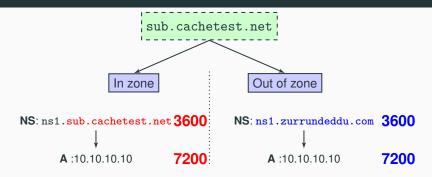




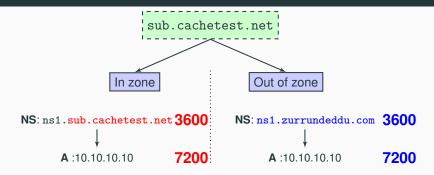




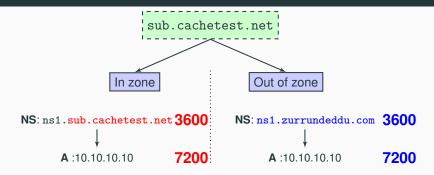




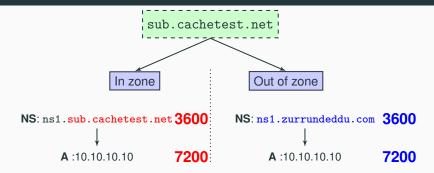
To resolve *.sub.cachetest.net, you need both NS and A



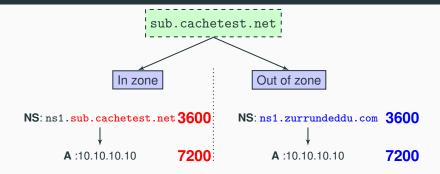
To resolve *.sub.cachetest.net, you need both NS and A Are NS and A cached independently?


To resolve *.sub.cachetest.net, you need both NS and A Are NS and A cached independently?

1. t=0: all Atlas VPs query (fills cache with NS and A)


To resolve *.sub.cachetest.net, you need both NS and A Are NS and A cached independently?

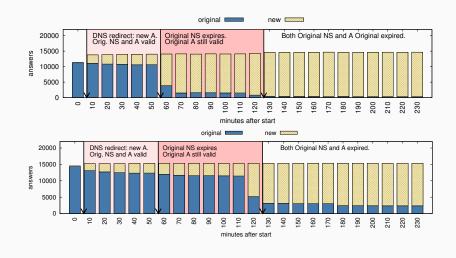
- 1. t=0: all Atlas VPs query (fills cache with NS and A)
- 2. t=4800: what happens ? NS is expired; A is still in cache: do resolvers use the "cached A" or refresh it again?

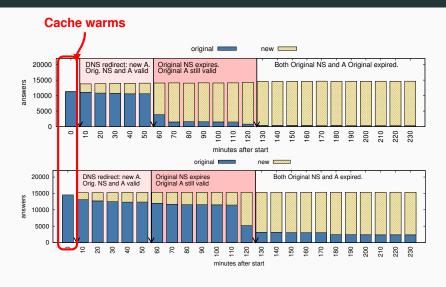

To resolve *.sub.cachetest.net, you need both NS and A Are NS and A cached independently?

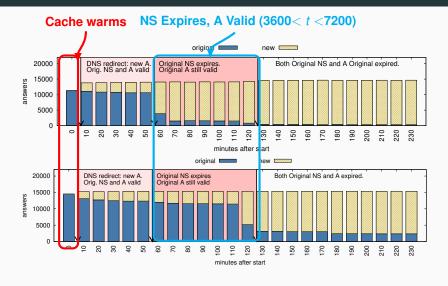
- 1. t=0: all Atlas VPs query (fills cache with NS and
- 2. t=4800: what happens ? NS is expired; A is still in cache: do resolvers use the "cached A" or refresh it again?

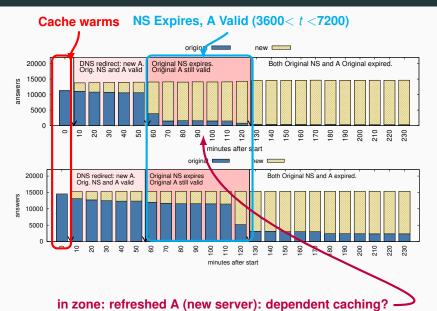

To resolve *.sub.cachetest.net, you need both NS and A Are NS and A cached independently?

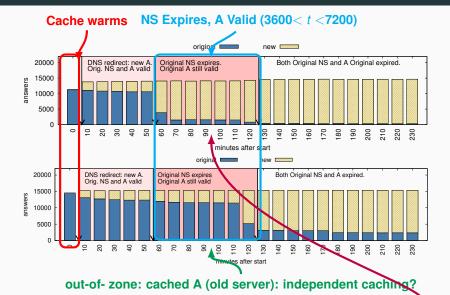
- 1. t=0: all Atlas VPs query (fills cache with NS and
- 2. t=4800: what happens ? NS is expired; A is still in cache: do resolvers use the "cached A" or refresh it again? trick: at t=540, we renumber A to 10.10.10.2 (diff answer)

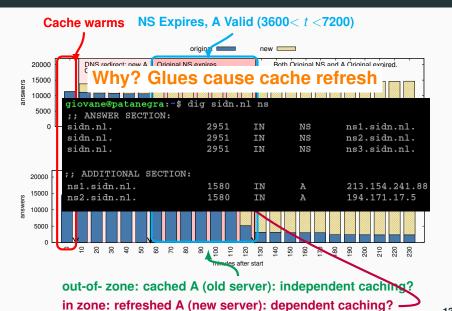


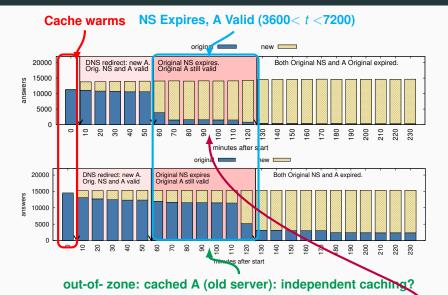

To resolve *.sub.cachetest.net, you need both NS and A Are NS and A cached independently?


1. t=0: all Atlas VPs query (fills cache with NS and X

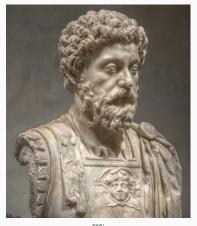








in zone: refreshed A (new server): dependent caching? —


13

13

in zone: refreshed A (new server): dependent caching? -

https://en.wikipedia.org/wiki/Marcus_Aurelius CC BY-SA 3.0

- Marcus Aurelius will notice"early" refreshed A for in-zone (in bailiwick)
- Zone configuration impacts caching too, not just TTLs

Outline

Introduction

Parent vs Child

Zone configurations and Effective TTL

TTLs Use in the Wild

Operators Notification

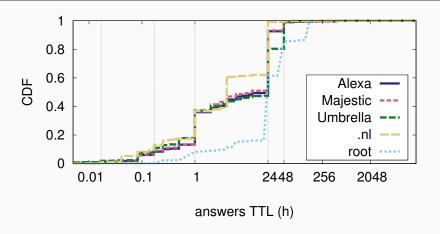
Caching (Longer TTL) vs Anycast

Shorter vs Longer TTLs

Recommendation and Conclusions

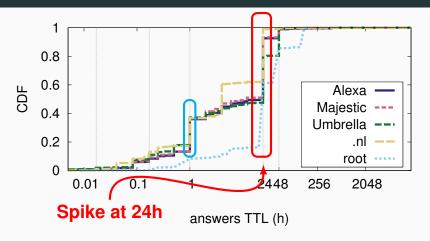
TTLs Use in the Wild

How are TTLs used in the wild?

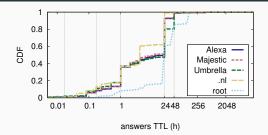

- There is no consensus how to choose TTLs
- But folks have to choose them anyway
- We use 5 lists:
 - Alexa
 - Majestic
 - Umbrella
 - .nl Zone
 - Root Zone (TLDs)
- We probe several records types
- We analyze child TTL values
- We discussed results with some operators

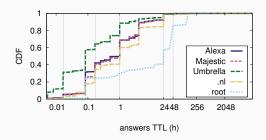
Most domains are out-of-bailiwick

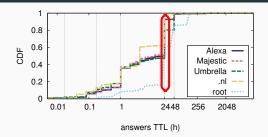
	Alexa	Majestic	Umbre.	.nl	Root
responsive	988654	928299	783343	5454833	1535
CNAME	50981	7017	452711	9436	0
SOA	12741	8352	59083	12268	0
responsive NS	924932	912930	271549	5433129	1535
Out only	878402	873447	244656	5417599	748
ratio out only	95.0%	95.7%	90.1	99.7%	48.7%
In only	37552	28577	20070	12586	654
Mixed	8978	10906	6823	2941	133

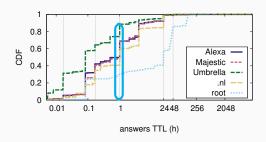

- Out of bailiwick (out-of-zone):
 - records are cached independently (no glues)
- Chosen TTLs values for different records will be respected

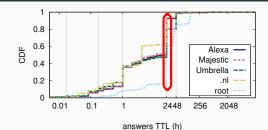
NS records have longer TTLs (>24h)


- > 60% NS records are long
 - (Good for caching and performance)
- But 40% are one hour or less (not so good)

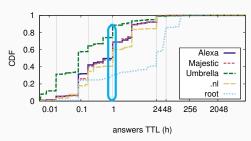

NS records have longer TTLs (>24h)


- > 60% NS records are long
 - (Good for caching and performance)
- But 40% are one hour or less (not so good)


A records have far shorter TTLs than NS



A records have far shorter TTLs than NS



A records have far shorter TTLs than NS

Shorter A records TTLs leads to poor caching

Operators Notification: 3 changed their TTLs

- We found **34 TLDs** with short NS TTL (<=30min)
 - We notified 8 ccTLDs
- 3 TLDs increased their TTL to 1 day after our notification
 - .uy, and
 - another in Africa
 - and another in the Middle-East

.uy latency reduced a lot!

• .uy NS TTL changed: 300s to 86400s

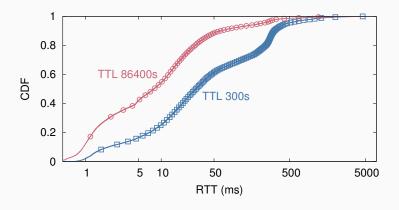


Figure 4: RTT from RIPE Atlas VPs for NS .uy queries (NS)

.uy latency reduced a lot!

• .uy NS TTL changed: 300s to 86400s

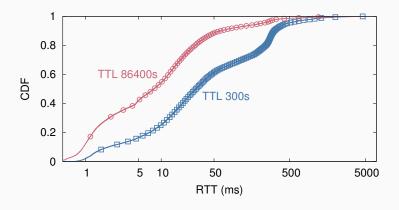


Figure 4: RTT from RIPE Atlas VPs for NS .uy queries (NS)

.uy latency reduced a lot!

.uy NS TTL changed: 300s to 86400s: lowered client latency

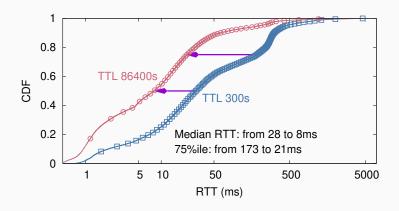


Figure 5: RTT from RIPE Atlas VPs for NS .uy queries (NS)

Median RTT improves by 20ms; 75%ile by 152ms

.uy latency reduced for all regions

Check for Atlas location bias

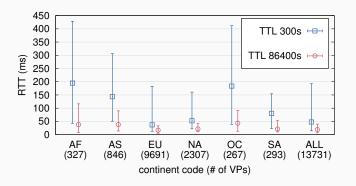


Figure 6: Median RTT as seen by RIPE Atlas VPs per region

 $\textbf{Longer TTL} \rightarrow \textbf{longer caching} \rightarrow \textbf{faster answers}$

.uy latency reduced for all regions

Check for Atlas location bias

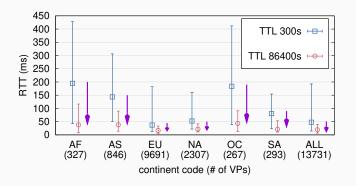


Figure 7: Median RTT as seen by RIPE Atlas VPs per region Longer TTL \rightarrow longer caching \rightarrow faster answers

Up to 150ms median latency reduction (AF)

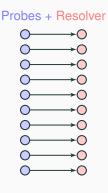
We are no Luiz Suárez... but

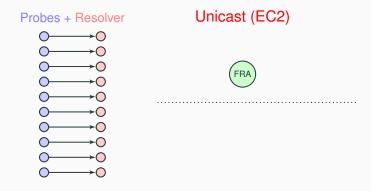
- We still helped Uruguayan .uy users
- And two other countries:
 - One in East Africa
 - · Another one in the Middle East
- Experiment proved TTLs are important for performance

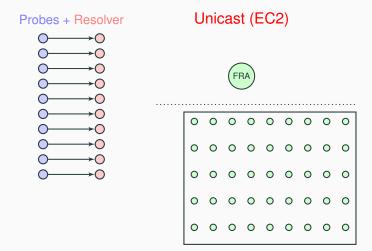
src: https://commons.wikimedia.org/wiki/File:
 Luis_Su%C3%A1rez_2018.jpg CC BY-SA 3.0

Longer TTLs are like the old Turbo button

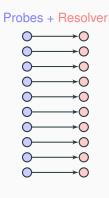
- Some DNS OPs spend 1000s of (your currency here) too reduce latency
- Longer TTLs improve latency at zero cost

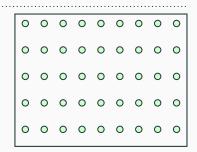

Src: wikipedia.org


Caching (Longer TTL) vs Anycast

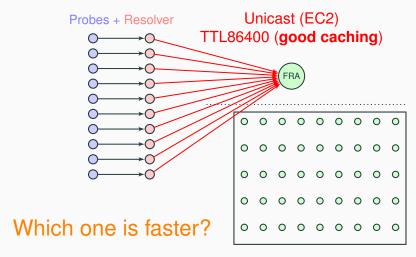

Caching vs Anycast

- There are many large, expensive anycast deployments
- OPs could say:
 - "I'll have short TTL since I use anycast",
 - because anycast can make it up for it.
- Does anycast actually beat caching?

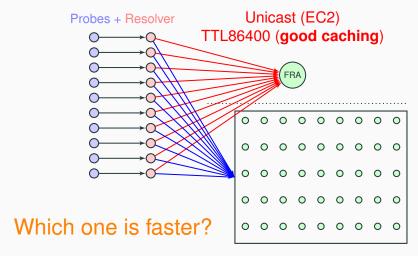

Caching vs Anycast: experiment

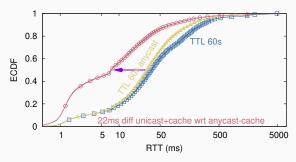


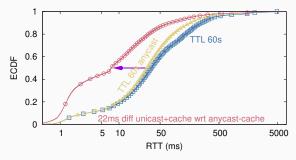
Anycast (Route53)

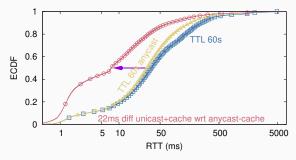


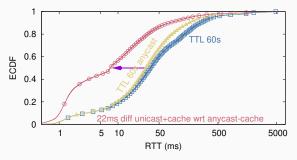
Unicast (EC2) TTL86400 (good caching)




TTL60s (poor caching) Anycast (Route53)


TTL60s (poor caching) Anycast (Route53)


TTL60s (poor caching) Anycast (Route53)


- Near-client caching beats great infrastructure!
 - Anycast TTL60 (no cache): 29.96ms (median)
 - Unicast TTL86400 (cache): 7.38ms (median):
 - 22ms median latency reduction
- Query load: 77% down with caching
- Conclusion: TTLs matter more for performance
 - (anycast is needed for other things too, e.g. DDoS [2])
 - We still strongly recommend using anycast [5]

- Near-client caching beats great infrastructure!
 - Anycast TTL60 (no cache): 29.96ms (median)
 - Unicast TTL86400 (cache): 7.38ms (median):
 - 22ms median latency reduction
- Query load: 77% down with caching
- Conclusion: TTLs matter more for performance
 - (anycast is needed for other things too, e.g. DDoS [2])
 - We still strongly recommend using anycast [5]

- Near-client caching beats great infrastructure!
 - Anycast TTL60 (no cache): 29.96ms (median)
 - Unicast TTL86400 (cache): 7.38ms (median):
 - 22ms median latency reduction
- Query load: 77% down with caching
- Conclusion: TTLs matter more for performance
 - (anycast is needed for other things too, e.g. DDoS [2])
 - We still strongly recommend using anycast [5]

- Near-client caching beats great infrastructure!
 - Anycast TTL60 (no cache): 29.96ms (median)
 - Unicast TTL86400 (cache): 7.38ms (median):
 - 22ms median latency reduction
- Query load: 77% down with caching
- Conclusion: TTLs matter more for performance
 - (anycast is needed for other things too, e.g. DDoS [2])
 - We still strongly recommend using anycast [5]

Reasons for Longer or shorter TTLs

- Longer caching:
 - faster responses to clients
 - lowers DNS traffic levels
 - more robust to DDoS attacks [4]
- Shorter caching:
 - faster operational value changes
 - useful for DNS redirect based DDoS scrubbing services
 - DNS-load balancing

Organizations must weight these trade-offs to find a good balance

Recommendation and Conclusions

Conclusions

- Recommendation: longer TTLs (1 day) if you can
 - unless using CDN load-balancing or DNS-redir DDoS
- Why? Because it can save you 50ms or more
 - But keep on using anycast too [2, 5]
- Should you reconsider your TTLs as well?

- Paper: https://www.isi.edu/ ~johnh/PAPERS/Moura19b.html
- IETF draft: draft-moura-dnsopauthoritative-recommendations

References i

- [1] DE VRIES, W. B., DE O. SCHMIDT, R., HARAKER, W., HEIDEMANN, J., DE BOER, P.-T., AND PRAS, A. Verfploeter: Broad and load-aware anycast mapping. In Proceedings of the ACM Internet Measurement Conference (London, UK, 2017).
- [2] MOURA, G. C. M., DE O. SCHMIDT, R., HEIDEMANN, J., DE VRIES, W. B., MÜLLER, M., WEI, L., AND HESSELMAN, C. Anycast vs. DDoS: Evaluating the November 2015 root DNS event.

References ii

In *Proceedings of the ACM Internet Measurement Conference* (Santa Monica, California, USA, Nov. 2016), ACM, pp. 255–270.

[3] MOURA, G. C. M., HEIDEMANN, J., DE O. SCHMIDT, R., AND HARDAKER, W.

Cache me if you can: Effects of DNS Time-to-Live (extended).

In *Proceedings of the ACM Internet Measurement Conference* (Amsterdam, the Netherlands, Oct. 2019), ACM, p. to appear.

References iii

[4] MOURA, G. C. M., HEIDEMANN, J., MÜLLER, M., DE O. SCHMIDT, R., AND DAVIDS, M.

When the dike breaks: Dissecting DNS defenses during DDoS.

In Proceedings of the ACM Internet Measurement Conference (Boston, MA, USA, Oct. 2018), pp. 8–21.

[5] MÜLLER, M., MOURA, G. C. M., DE O. SCHMIDT, R., AND HEIDEMANN, J.

Recursives in the wild: Engineering authoritative DNS servers.

In *Proceedings of the ACM Internet Measurement Conference* (London, UK, 2017), ACM, pp. 489–495.