DNS-over-QUIC

First experience with DoQ

Andrey Meshkov

CTO and Co-Founder of AdGuard
am@adguard.com
@ay_meshkov

mailto:am@adguard.com

Intro

DNS-based products by AdGuard

e AdGuard DNS — public DNS resolver

e AdGuard Home — DNS server for personal use with
content blocking capabilities

e AdGuard apps provide DNS filtering and encryption
capabilities (DoH/DoT/DNSCrypt)

e Recently we've added DoQ support to all of them:
https://adguard.com/en/blog/dns-over-quic.html

https://adguard.com/en/blog/dns-over-quic.html

AdGuard DNS

Public DNS resolver with the focus on content blocking
The first beta was launched in the end of 2016
Officially released in December, 2018

Open-source
https://github.com/AdguardTeam/AdGuardDNS

Most of the clients are mobile devices

https://github.com/AdguardTeam/AdGuardDNS

AdGuard DNS

Avg 100,000+ RPS

DNS: 46%
DoT: 37%
DoH: 15%
DNSCrypt: 1%
DoQ: 1%

DNS-over-HTTPS

15.3%

DNSCrypt

1.0%
DNS-over-QUIC

1.0%

DNS-over-TLS

Plain DNS

36.7%

45.9%

DNS Encryption

Different protocols pros and cons

Plain DNS - fast, no encryption

DNSCrypt - fast, non-standard encryption

DoT - slow, standard encryption

DoH - slow but practical, standard encryption,
more data points that can be potentially used for
fingerprinting

e DoT/DoH bandwidth is x2.5 compared to DNS

QUIC vs TCP+TLS

e Faster handshake
e Solves head-of-line blocking
e Connection migration

Faster Handshake

HTTP Request Over TCP + TLS HTTP Request Over QUIC
Client Server Client Server
= TCP SYN -= Tauie |
- \ l-.l...o.o.o - - l _l
= R | =m— — N e — | ==
TCP SYN + ACK —
“— —
TCP ACK QUIE
_— \) ——
TLS ClientHello HITPREQUESE. |
—
— HTTP Response
TLS ServerHello “—
«“—

\
TLS Finished

\
HTTP Request
~=

—_—
HTTP Response

Images from https://blog.cloudflare.com/the-road-to-quic/

Head-Of-Line Blocking

Server Client
Response 1
> X
Response 2
N
e
Response 3
N
=g
Response 1
N
>

retransmission

HTTP/2 head-of-line blocking: a single TCP
packet loss will, all queries/responses have to
wait

Lost

Queued

Queued

Processed

Server Client
Response 1
> X
Response 2
N
g
Response 3
N
g
Response 1
N
g

retransmission

QUIC - every DNS query/response is a new
QUIC stream

Lost

Processed

Processed

Processed

Connection Migration

Public Connection ID
Flags(8) (0, 8, 32 or 64)

QUIC Version (32) Packet Number
(optional) (8, 16, 32 or 48)

QUIC packet header

e Endpoints can use “Connection ID” to track connections
e This makes it possible to continue using the same connection when network
change occur (i.e. Wi-Fi <-> Cellular)

DoQ vs DNS-over-HTTP/3

Both DoQ and DoH3 use QUIC as an underlying transport
HTTP/3 adds HTTP on top of it

HTTP adds almost zero value

It adds more data-points that can be used for fingerprinting clients

Examples:
o HTTP headers order
o TLS properties
o ETag tracking

DoQ Server-Side Implementations

e CoreDNS fork:
https://qgithub.com/AdquardTeam/coredns

==
i)
Y

1 quic:

tls certs/example.crt certs/example.key
forward

Sample CoreDNS configuration

https://github.com/AdguardTeam/coredns

DoQ Server-Side Implementations

e dnsproxy:
https://github.com/AdquardTeam/dnsproxy

./dnsproxy \
-1 001X
--quic-port=

--tls-crt=example.crt \
--tls-key=example.key \
=l 8.8.8.8:(53 \

-P

Running dnsproxy as a DoQ server
forwarding queries to 8.8.8.8

https://github.com/AdguardTeam/dnsproxy

DoQ Server-Side Implementations

e AdGuard Home:
https://github.com/Adgquard Team/AdGuardHome

DNS-over-QUIC port (experimental)

784

If this port is configured, AdGuard Home will run a DNS-over-QUIC server on this port. It's
experimental and may not be reliable. Also, there are not too many clients that support it at

the moment.

https://github.com/AdguardTeam/AdGuardHome

DoQ Client-Side Implementations

e dnsproxy (written in Golang, can be used as a library):
https://github.com/AdguardTeam/dnsproxy

e AdGuard Home (written in Golang, uses dnsproxy internally):
https://qithub.com/AdguardTeam/AdGuardHome

e DnsLibs (library, written in C++):
https://qithub.com/AdgquardTeam/DnsLibs

e dnslookup (simple nslookup-like util, supports DoQ/DoH/DoT/DNSCrypt):
https://github.com/ameshkov/dnslookup

https://github.com/AdguardTeam/dnsproxy
https://github.com/AdguardTeam/AdGuardHome
https://github.com/AdguardTeam/DnsLibs
https://github.com/ameshkov/dnslookup

QUIC Implementations

e Golang: quic-go
https://qithub.com/lucas-clemente/quic-go
Does not support connection migration yet.

e (C++: ngtcp2
https://github.com/ngtcp2/ngtcp2

https://github.com/lucas-clemente/quic-go
https://github.com/ngtcp2/ngtcp2

Current issues

e Connection migration is not supported by AdGuard DNS:
o Not yet implemented in quic-go
o We use ECMP to balance load between servers in the same location
which is not compatible with connection migration

e QUIC and DoQ are still drafts:

o They’re not likely to change much, though

Feedback

e Users’ feedback ranges from very positive to neutral

vikingr666 5 points - 25 days ago
Seems to be working pretty well for me on iOS!

e We're yet to get the precise numbers, but for now it seems that:
o The share of networks where DoQ is blocked, is quite small
o It does provide advantage over DoH in cellular data networks, as expected

Thank you!

Questions?

Andrey Meshkov

am@adguard.com
@ay_meshkov

mailto:am@adguard.com

