
DNS-over-QUIC
First experience with DoQ

Andrey Meshkov
CTO and Co-Founder of AdGuard
am@adguard.com
@ay_meshkov

mailto:am@adguard.com


DNS-based products by AdGuard

● AdGuard DNS — public DNS resolver
● AdGuard Home — DNS server for personal use with 

content blocking capabilities
● AdGuard apps provide DNS filtering and encryption 

capabilities (DoH/DoT/DNSCrypt)
● Recently we’ve added DoQ support to all of them:

https://adguard.com/en/blog/dns-over-quic.html

Intro

https://adguard.com/en/blog/dns-over-quic.html


AdGuard DNS
● Public DNS resolver with the focus on content blocking
● The first beta was launched in the end of 2016
● Officially released in December, 2018
● Open-source

https://github.com/AdguardTeam/AdGuardDNS
● Most of the clients are mobile devices

https://github.com/AdguardTeam/AdGuardDNS


AdGuard DNS
Avg 100,000+ RPS

DNS: 46%
DoT: 37%
DoH: 15%
DNSCrypt: 1%
DoQ: 1%



DNS Encryption
Different protocols pros and cons

● Plain DNS - fast, no encryption
● DNSCrypt - fast, non-standard encryption
● DoT - slow, standard encryption
● DoH - slow but practical, standard encryption, 

more data points that can be potentially used for 
fingerprinting

● DoT/DoH bandwidth is x2.5 compared to DNS



QUIC vs TCP+TLS
● Faster handshake
● Solves head-of-line blocking
● Connection migration



Faster Handshake

Images from https://blog.cloudflare.com/the-road-to-quic/



Head-Of-Line Blocking

HTTP/2 head-of-line blocking: a single TCP 
packet loss will, all queries/responses have to 
wait

QUIC - every DNS query/response is a new 
QUIC stream



● Endpoints can use “Connection ID” to track connections
● This makes it possible to continue using the same connection when network 

change occur (i.e. Wi-Fi <-> Cellular)

Connection Migration

QUIC packet header



DoQ vs DNS-over-HTTP/3
● Both DoQ and DoH3 use QUIC as an underlying transport
● HTTP/3 adds HTTP on top of it
● HTTP adds almost zero value
● It adds more data-points that can be used for fingerprinting clients

Examples:
○ HTTP headers order
○ TLS properties
○ ETag tracking



● CoreDNS fork:
https://github.com/AdguardTeam/coredns

DoQ Server-Side Implementations

Sample CoreDNS configuration

https://github.com/AdguardTeam/coredns


● dnsproxy:
https://github.com/AdguardTeam/dnsproxy

DoQ Server-Side Implementations

Running dnsproxy as a DoQ server 
forwarding queries to 8.8.8.8

https://github.com/AdguardTeam/dnsproxy


● AdGuard Home:
https://github.com/AdguardTeam/AdGuardHome

DoQ Server-Side Implementations

https://github.com/AdguardTeam/AdGuardHome


● dnsproxy (written in Golang, can be used as a library):
https://github.com/AdguardTeam/dnsproxy

● AdGuard Home (written in Golang, uses dnsproxy internally):
https://github.com/AdguardTeam/AdGuardHome

● DnsLibs (library, written in C++):
https://github.com/AdguardTeam/DnsLibs

● dnslookup (simple nslookup-like util, supports DoQ/DoH/DoT/DNSCrypt):
https://github.com/ameshkov/dnslookup

DoQ Client-Side Implementations

https://github.com/AdguardTeam/dnsproxy
https://github.com/AdguardTeam/AdGuardHome
https://github.com/AdguardTeam/DnsLibs
https://github.com/ameshkov/dnslookup


● Golang: quic-go
https://github.com/lucas-clemente/quic-go
Does not support connection migration yet.

● C++: ngtcp2
https://github.com/ngtcp2/ngtcp2

QUIC Implementations

https://github.com/lucas-clemente/quic-go
https://github.com/ngtcp2/ngtcp2


Current issues
● Connection migration is not supported by AdGuard DNS:

○ Not yet implemented in quic-go
○ We use ECMP to balance load between servers in the same location 

which is not compatible with connection migration

● QUIC and DoQ are still drafts:
○ They’re not likely to change much, though



Feedback
● Users’ feedback ranges from very positive to neutral

● We’re yet to get the precise numbers, but for now it seems that:
○ The share of networks where DoQ is blocked, is quite small
○ It does provide advantage over DoH in cellular data networks, as expected



Thank you!
Questions?

Andrey Meshkov
am@adguard.com

@ay_meshkov

mailto:am@adguard.com

