
Hashed RPZ
Jeroen Massar <jeroen@massar.ch>

New law in Switzerland:
ISP block CSAM domains

• Switzerland introduced a new law[1][2][3], active per
2021-01-01, that Access Providers need to block Internet
content as per direction of the Swiss Federal Police
(FedPol) for the purpose of blocking CSAM.

• The blocking is domain based, the list of domains is
distributed from FedPol by fetching from a not-in-DNS
password-based SFTP server, multiple lists each in a
password protected RAR file.

[1] https://www.bakom.admin.ch/bakom/de/home/das-bakom/organisation/rechtliche-grundlagen/bundesgesetze/fmg-revision-2017/revision-fmg-verordnungen.html

[2] https://www.fedlex.admin.ch/eli/cc/2007/166/en

[3] https://www.fedlex.admin.ch/eli/cc/1997/2187_2187_2187/en

https://www.bakom.admin.ch/bakom/de/home/das-bakom/organisation/rechtliche-grundlagen/bundesgesetze/fmg-revision-2017/revision-fmg-verordnungen.html
https://www.fedlex.admin.ch/eli/cc/2007/166/en
https://www.fedlex.admin.ch/eli/cc/1997/2187_2187_2187/en

Standard Solution: RPZ
• RPZ ("Response Policy Zones") aka DNS Firewalls by Paul Vixie and Vernon

Schryver[1], implemented in most DNS recursor server software.

• Used for blocking of unwanted content (ads, malware, etc.), by encoding
hostnames into a normal DNS zone with actions on the right hand.

• Examples (as left hand sides inside a zone, for instance blocklist.rpz.example.org):

• => causes NXDOMAIN

• => causes a faking of A/AAAA
and thus for instance for HTTP going to the new address (but with HTTPS
being prevalent typically a SSL/TLS error)

• Thus for instance for the Swiss "Casino Law"[2] we create a RPZ zone (as ESBK/
COMLOT do not provide one) and configure recursors to block using that. 
People going to https://casino.example.com get redirected to the blocking page
which is served with a wrong SSL cert as we do not have that one. 
Bypass is also easy by configuring different DNS server, but >95% use ours[3].

[1] https://dnsrpz.info

[2] https://www.fedlex.admin.ch/eli/cc/2018/795/de

[3] https://stats.labs.apnic.net/rvrs

www.bad.example.net CNAME .

www.wall.example.com CNAME wall.example.org.

https://casino.example.com
https://dnsrpz.info
https://www.fedlex.admin.ch/eli/cc/2018/795/de
https://stats.labs.apnic.net/rvrs

Problems with access to cleartext
lists of illegal content

• Having access to the list, which one has a copy of due to
AXFR means you would know the URLs of the illegal
content. And in this case content that is socially very
controversial and where one want to remain far away
from.

• For debugging, troubleshooting or maintenance, one
could accidentally already stumble upon the content of
the list.

• Backups of systems would also create a backup of these
zones and thus store them in another location, more
possibility to exposure.

What I want to avoid...
• I don't want to cause a random engineer who maybe just

does maintenance or some troubleshooting and thus not
knows about the type of content, be accidentally exposed
to the contents of the list due to possible legal and
personal consequences.

• "They have this link on their computer, they must have
been looking at it!"

• one does not want to show up in the news cycle for
that, it destroys careers and people.

Hashed RPZ
• Instead of having the left hand sides in clear text, we hash them. To preserve the

possibility of wildcard matching we hash per component.

• The algorithm is thus relatively simple:

• Split the left hand side by label.

• Then for each component from right to left:

• If the component is a wildcard (*), keep it verbatim (unhashed).

• Hash with BLAKE3 keyed, but as a complete domain up to that point; hashing size
is 4, 8 or 16 bytes depending on input length (this to keep output length short, as
base32hex causes the length to double thus some left hands sides might not fit).

• Output the hash using base32hex lowercase (RFC4648)

• For would be:

• PS: This is not a new idea: with PowerDNS Recursor one can use Lua to do MD5 over the
left hand sides as has been used by many providers.

[1] https://github.com/massar/hashedrpz

hash(www.example.com) + '.' + hash(example.com) + '.' + hash(com)www.example.com

https://github.com/massar/hashedrpz
http://www.example.com/
http://www.example.com/

BLAKE3
• Don't roll your own crypto:

thus I trust people like Zooko,
Jean-Philippe Aumasson,
Samuel Neves & Jack
O'Conner for their excellent
cryptographic work.

• BLAKE3 is secure, fast,
applicable for short strings
(like DNS labels).

• BLAKE3 can be keyed with a
passphrase thus rainbow-style
attacks are mostly futile.

[1] https://github.com/BLAKE3-team/BLAKE3

https://github.com/BLAKE3-team/BLAKE3

Key Selection & Distribution
• The BLAKE3 hashing key is composed of two parts:

• In-band: included in-band public in cleartext in the zone as a
TXT record (_rpzhashkey.<domain>); thus allowing the
producer of the hash to rotate the key often and distribute it
to consumers.

• OOB: as per-configuration of the RPZ zone, distributed OOB
as part of RPZ zone setup, suggested: include source name.

• One should of course choose a long (64 char+) complex one,
preferable generated with proper randomness.

• Due to in-band key rotation and the unknown, it becomes
extremely tough to be able to use rainbow-style attacks against
the list.

Examples
• Input:

• Output:

• The example.com portion is thus hashed the same, but a
different TLD causes 'example' not to match.

• Even though 'www' is common, it won't ever hash the same.

www.example.net

one.example.com

two.example.com

9mgrvf8.qa4gjtuvuia82ubhh705n29hm0.0hjg4h0

fca618e.r939194s2f5m5rdougo4rvc0gg.u32p0s0

w21jice.r939194s2f5m5rdougo4rvc0gg.u32p0s0

Putting it together
• A restricted VM (Full Disk Encrypted with password in a safe), that

does not listen on the network except for SSH, does not allow non-
restricted SSH login after boot or even to do upgrades (one can
generate a new image to do updates). At boot it asks for the FDE
key to unlock the root filesystem and then the PGP key to decrypt
the configuration file with SFTP/RAR passwords. All intermediate
files are stored in memory (tmpfs).

• This system has a crontab that fetches the RARs from SFTP and
hashes each entry and produces a RPZ zone file.

• Our DNS backend system then fetches the hashed zone over SFTP
with a very restricted account that can only fetch the zone file and
then loads that up in our DNS system, which distributes to the
recursors.

• Future: ask FEDPOL to generate the hashed zone file instead of us.
(Somebody could do VM memory introspection etc, but then you are actively looking for the something illegal...

 -- dedicated hardware could partially address these kind of attacks, though Cold Boot Attacks exist ;)

Implementation: Noqoshu
• For quicker implementation and as we had other requirements already:

extended an existing DNS recursive server in golang called Noqoshu
(Somali for "to return").

• Not published as Open Source yet, but soon... not intended to compete
with existing recursors that are very feature rich, stable and well tested.

• The real hard work is done by Miek Gieben's Golang DNS library[1].

• Uses OSRG GoBGP[2] for integrated anycast support.

• At Cache-Miss (~10% of queries), before looking up the real result, a
RPZ lookup is performed (Whitelists, Blacklists[Casino,ESBK,COMLOT]
or the HashedRPZ list for FEDPOL, at which point we hash the left hand
side with the keys for that zone with [3] and verify if the entry is in zone.

• Need to still run flamethrower[4] over it for performance tests (time, so
little of it, even if you don't travel) and do a lot of docs etc.

[1] https://github.com/miekg/dns

[2] https://github.com/osrg/gobgp/

[3] https://github.com/massar/hashedrpz

[4] https://github.com/DNS-OARC/flamethrower

https://github.com/miekg/dns
https://github.com/osrg/gobgp/
https://github.com/massar/hashedrpz
https://github.com/DNS-OARC/flamethrower

Future Work
• Integrate feedback from operators and developers.

• IETF Draft to standardise this method so that interoperable
code can be made.

• More implementations (read: provide patches for unbound /
pdns-recursor / knot resolver / bind9)

• More optimisations & testing.

• Attempting to get FEDPOL to do the producing of the RPZ
zone, so that they can effectively publicly distribute the zone
file, and consumers never ever have to see the cleartext
version of the list (oversight becomes a question of course)

With HashedRPZ we keep engineers safe! 
(and who does not love mashed potatoes???)

Jeroen Massar 
<jeroen@massar.ch>

mailto:jeroen@massar.ch

Bonus Slides
Extra answers about the Dutch Naming System

Why per-label Hash?
From a discussion with Peter van Dijk (habbie/PowerDNS), there are effectively
three options:

• 1) hash(www).hash(example).hash(com) leaks more than you want (can see
example in example.com == example.net, due to hash), but has efficient lookups

• 2) hash(www.example.com) leaks as little as possible, but has expensive
lookups (can't have a tree structure in your lookups, all has to be in a single table)

• 3) hash(www.example.com).hash(example.com).hash(com) leaks very little
(one can see a domain has multiple entries), but has efficient lookups.

Hashing is cheap in comparison, and for each sub-domain one hash to hash
anyway. One can thus progressively hash, lookup, hash, lookup.

Option 3) is what HashedRPZ uses.

Including the origindomain?
I had a thought about including the origin domain, thus instead of:

• hash(www.example.com).hash(example.com).hash(com)

• hash(www.example.com.origindomain).hash(example.com.origindomain).hash
(com.origindomain)

While this will produce 'more salt', the key already provides a decent amount of
salt.

It would "lock" the ownernames to that zone, thus disallowing records to be
easily transferred from say rpz.example.org to rpz.example.com as the origin
would be included in the calculation.

http://www.example.com/
http://www.example.com.origindomain/

Doesn't blocking suck?
• Yes, I personally rather also not do it because it breaks many more things, but it is the law even though

many people tried to explain the disadvantages, the voting people did not get that information, nor will
they understand how DNS works, let alone what it is.

• 90% of customers tend to keep/use the ISP DHCP-provided DNS recursive: thus for most customers it
will cause an effect. Thus DNS-based blocking is great for malware/phishing blocking as it breaks those
sites and typically there is nothing else on it. SafeBrowsing takes swift care in many cases too though,
and actually provides a proper readable warning that avoids helpdesk calls. DNS blocking though is
'intransparent' for the user: a TXT record or similar for the blocking reason would be helpful to have, if
that signal could reach the UI of the customer.

• Customers that want to access the content anyway can circumvent ISP-provided DNS based blocks
easily configure DNS servers under other jurisdictions (e.g. 8.8.8.8 is provided not by a Swiss Internet
Access Provider thus does not have to block things) or a VPN of many kinds or even Tor.

• Due to HTTPS and TLS in general, 'redirecting' (RPZ CNAME) to a blocking server results in SSL
certicate errors.

• Sometimes protocols get broken, eg. SMTP mail delivery (thus can't send a contact mail to the site
either), as the blocking server only supports HTTP(S) and not SMTP (the Internet is more than just the
web...).

• Many of these problems (especially the casino law) thus result in extra helpdesk calls... => helpdesk has
a tool for checking if a domain is on and which blocking list; though they need to know the domain,
which the customer has to provide.

Running Code?
• Code: 

https://github.com/massar/hashedrpz

• Docs: 
https://pkg.go.dev/github.com/massar/hashedrpz

package main

import (
 "fmt"
 "github.com/massar/hashedrpz"
)

function main() {
 h := hashedrpz.New("teststring")

 o, err := h.Hash("host.example.net", 200)
 if err != nil {
 fmt.Printf("Hashing gave error %s", err)
 return
 }

 fmt.Printf("Hashed to:\n%s\n", o)
 return
}

https://github.com/massar/hashedrpz
https://pkg.go.dev/github.com/massar/hashedrpz

Performance?
$ go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/massar/hashedrpz
BenchmarkHashTests-8 281691 3832 ns/op
BenchmarkHashMany-8 40305 29439 ns/op
BenchmarkHashSimple-8 384877 3063 ns/op
BenchmarkHash10M-8 10000000 5190 ns/op
 3 avg.#labels
 23 avg.length
 2368 toolong
 38 wrongwildcard
PASS
ok github.com/massar/hashedrpz 55.744s

The example implementation has golang based test & benchmark
code.

As can be seen, average domains based on DNS-OARC 10M list
from 2012 uses 5190ns/ownername on a very trusty machine from
that year, but the 6 year newer machine is already 60% faster...

$ go test -bench .
goos: darwin
goarch: amd64
pkg: github.com/massar/hashedrpz
BenchmarkHashTests-8 1672880 688 ns/op
BenchmarkHashMany-8 196862 5762 ns/op
BenchmarkHashSimple-8 2139783 577 ns/op
BenchmarkHash10M-8 10000000 1163 ns/op
 3 avg.#labels
 23.0 avg.length
 2368 toolong
 38 wrongwildcard
PASS
ok github.com/massar/hashedrpz 16.575s

2012 iMac 27" i7-2600 @ 3.4Ghz

2018 MBP 13" i7-8559U @ 2.7Ghz

No more mashed potatoes... (final slide)

