
1

Siva Kesava Reddy Kakarla1

Ryan Beckett2 Todd Millstein1,3 George Varghese1

1
University of California, Los Angeles

Microsoft
2 3

Intentionet

“So, you think your

Nameservers are Correct?”

Finding Errors Automatically in Nameserver Implementations

2

Implementing Nameservers Correctly is Hard!

3

RFCs
1034, 4592, 6672, …

Implementing Nameservers Correctly is Hard!

4

RFCs
1034, 4592, 6672, …

Implementing Nameservers Correctly is Hard!

DNS Developers

5

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

Implementing Nameservers Correctly is Hard!

DNS Developers

6

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

Implementing Nameservers Correctly is Hard!

DNS Developers Crashes?
Incorrect responses?
Different response from others?

7

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

Implementing Nameservers Correctly is Hard!

DNS Developers

Compliance?

Crashes?
Incorrect responses?
Different response from others?

8

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

DNS Developers Crashes?
Incorrect responses?
Different response from others?

Compliance?

Current Practice: Ad Hoc Manual Testing

9

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

DNS Developers Crashes?
Incorrect responses?
Different response from others?

Compliance?

Manually Writing
Tests to Catch Errors

Current Practice: Ad Hoc Manual Testing

10

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

DNS Developers

Compliance?

Manually Writing
Tests to Catch Errors

Current Practice: Ad Hoc Manual Testing

Crashes?
Incorrect responses?
Different response from others?

Can we do better and
reduce burden?

11

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

DNS Developers

Compliance?

Manually Writing
Tests to Catch Errors

Current Practice: Ad Hoc Manual Testing

Crashes?
Incorrect responses?
Different response from others?

Can we do better and
reduce burden?

Yes!!

12

RFCs
1034, 4592, 6672, …

Implementations in
C / C++ / Go / …

DNS Developers

Compliance?

Manually Writing
Tests to Catch Errors

Current Practice: Ad Hoc Manual Testing

Crashes?
Incorrect responses?
Different response from others?

Can we do better and
reduce burden?

Yes!!

But how?

13

FERRET - Generate tests
automatically and compare

across implementations

Our Idea:

14

FERRET - Generate tests
automatically and compare

across implementations

Our Idea:

How to generate high-
coverage tests that identify

functional correctness errors?

15

FERRET: End-to-End Design

RFCs
1034, 4592, 6672, …

16

FERRET: End-to-End Design

Tests

Test Generation Module

RFCs
1034, 4592, 6672, … ⟨zone file1, query1⟩ ⟨zone file2, query2⟩ ⟨zone filen, queryn⟩…

17

FERRET: End-to-End Design

Tests

Test Generation Module

RFCs
1034, 4592, 6672, … ⟨zone file1, query1⟩ ⟨zone file2, query2⟩ ⟨zone filen, queryn⟩…

Domain Name Type Data

campus.edu. SOA ns1.exm. …

foo.campus.edu. NS ns1.campus.edu

ns1.campus.edu. A 1.1.1.1

Query: ⟨anything.foo.campus.edu., A⟩

18

FERRET: End-to-End Design

Tests

Test Generation Module

RFCs
1034, 4592, 6672, … ⟨zone file1, query1⟩ ⟨zone file2, query2⟩ ⟨zone filen, queryn⟩…

Modular Approach: Nameservers keep no internal state → A
zone file is enough to test the logic at an isolated nameserver

Domain Name Type Data

campus.edu. SOA ns1.exm. …

foo.campus.edu. NS ns1.campus.edu

ns1.campus.edu. A 1.1.1.1

Query: ⟨anything.foo.campus.edu., A⟩

19

FERRET: End-to-End Design

Tests

Test Generation Module

RFCs
1034, 4592, 6672, …

FERRET generates tests that are independent of the source code →
Can test any nameserver implementation

⟨zone file1, query1⟩ ⟨zone file2, query2⟩ ⟨zone filen, queryn⟩…

Modular Approach: Nameservers keep no internal state → A
zone file is enough to test the logic at an isolated nameserver

Domain Name Type Data

campus.edu. SOA ns1.exm. …

foo.campus.edu. NS ns1.campus.edu

ns1.campus.edu. A 1.1.1.1

Query: ⟨anything.foo.campus.edu., A⟩

20

FERRET: End-to-End Design

Tests

Test Generation Module

21

FERRET: End-to-End Design

Tests

Test Generation Module

BIND NSD KNOT PDNS …

22

TestsTests

FERRET: End-to-End Design

Tests

Test Generation Module

BIND NSD KNOT PDNS …

Response Grouping

23

TestsTests

FERRET: End-to-End Design

Tests

Test Generation Module

BIND NSD KNOT PDNS …

Response Grouping

Single group

24

TestsTests

FERRET: End-to-End Design

Tests

Test Generation Module

BIND NSD KNOT PDNS …

Response Grouping

Single group > 1 group

25

TestsTests

FERRET: End-to-End Design

Tests

Test Generation Module

BIND NSD KNOT PDNS …

Response Grouping

Single group > 1 group

Differential Testing Module

26

Differential Testing

Implementation Language Description

BIND C de facto standard

POWERDNS C++ popular in North Europe

NSD C hosts several TLDs

KNOT C hosts several TLDs

COREDNS Go used in Kubernetes

YADIFA C created by EURid (.eu)

TRUSTDNS Rust security, safety focused

MARADNS C lightweight server

Open-source Nameserver Implementations Tested

BIND

27

Differential Testing

Implementation Language Description

BIND C de facto standard

POWERDNS C++ popular in North Europe

NSD C hosts several TLDs

KNOT C hosts several TLDs

COREDNS Go used in Kubernetes

YADIFA C created by EURid (.eu)

TRUSTDNS Rust security, safety focused

MARADNS C lightweight server

Open-source Nameserver Implementations Tested

 Docker image for each implementation

BIND

28

Differential Testing

Implementation Language Description

BIND C de facto standard

POWERDNS C++ popular in North Europe

NSD C hosts several TLDs

KNOT C hosts several TLDs

COREDNS Go used in Kubernetes

YADIFA C created by EURid (.eu)

TRUSTDNS Rust security, safety focused

MARADNS C lightweight server

Open-source Nameserver Implementations Tested

 Docker image for each implementation

 FERRET starts a container for each image

BIND

29

Differential Testing

Implementation Language Description

BIND C de facto standard

POWERDNS C++ popular in North Europe

NSD C hosts several TLDs

KNOT C hosts several TLDs

COREDNS Go used in Kubernetes

YADIFA C created by EURid (.eu)

TRUSTDNS Rust security, safety focused

MARADNS C lightweight server

Open-source Nameserver Implementations Tested

 Docker image for each implementation

 FERRET starts a container for each image

 Unique host port is mapped to port 53 of
the container

BIND

30

Differential Testing

Implementation Language Description

BIND C de facto standard

POWERDNS C++ popular in North Europe

NSD C hosts several TLDs

KNOT C hosts several TLDs

COREDNS Go used in Kubernetes

YADIFA C created by EURid (.eu)

TRUSTDNS Rust security, safety focused

MARADNS C lightweight server

Open-source Nameserver Implementations Tested

 Docker image for each implementation

 FERRET starts a container for each image

 Unique host port is mapped to port 53 of
the container

 Each container servers one zone file at a
time as an authoritative zone

BIND

31

Differential Testing

Implementation Language Description

BIND C de facto standard

POWERDNS C++ popular in North Europe

NSD C hosts several TLDs

KNOT C hosts several TLDs

COREDNS Go used in Kubernetes

YADIFA C created by EURid (.eu)

TRUSTDNS Rust security, safety focused

MARADNS C lightweight server

Open-source Nameserver Implementations Tested

 Docker image for each implementation

 FERRET starts a container for each image

 Unique host port is mapped to port 53 of
the container

 Each container servers one zone file at a
time as an authoritative zone

 FERRET uses python library dnspython to
send queries and collect responses

BIND

32

Bugs Found

†Implementations with unreported issues due to missing or unimplemented features

33

Example Bugs

Domain Name Type Data

uni.edu SOA ns1.exm. …

test.uni.edu. DNAME edu.

Query: ⟨test.uni.test.uni.edu.,DNAME⟩

FERRET Generated Test Case

BIND

OTHERS

Synthesized CNAME
+DNAME as Response

No Response!

 Query is rewritten using DNAME to:
test.uni.test.uni.edu. CNAME test.uni.edu.

 The rewritten query will match exactly with the DNAME record.

34

Example Bugs

Domain Name Type Data

uni.edu SOA ns1.exm. …

test.uni.edu. DNAME edu.

Query: ⟨test.uni.test.uni.edu.,DNAME⟩

FERRET Generated Test Case

BIND

OTHERS

Synthesized CNAMEs
as Response

No Response!/lib/x86_64-linux-gnu/libpthread.so.0(+0x76db) [0x7f2094e876db]
/lib/x86_64-linux-gnu/libc.so.6(clone+0x3f) [0x7f209498b71f]
exiting (due to assertion failure)
Aborted (core dumped)
fatal error: stack overflow

• Server Crashes !!
• Easily-weaponizable denial-

of-service vector
• Remotely Exploitable
• Affected all currently

maintained BIND 9 branches

Initiated a responsible disclosure

CVE-2021-25215 (High Severity): An assertion
check can fail while answering queries for DNAME
records that require the DNAME to be processed
to resolve itself

Crash in BIND

35

Domain Name Type Data

example. SOA ns1.exm. …

*.example. CNAME foo.example.

Query: ⟨baz.bar.example., CNAME⟩

BIND

COREDNS

Synthesized CNAMEs
as Response

No Response!

FERRET Generated Test Case

Popular open-sourced server written in Go
Recommended Server for Kubernetes

Example Bugs

 Query is rewritten using CNAME to:
baz.bar.example. CNAME foo.example.

 The rewritten query will match the wildcard again !

36

Popular open-sourced server written in Go
Recommended Server for Kubernetes

Domain Name Type Data

example. SOA ns1.exm. …

*.example. CNAME foo.example.

Query: ⟨baz.bar.example., CNAME⟩

BIND

COREDNS

Synthesized CNAMEs
as Response

No Response!

FERRET Generated Test Case

runtime: goroutine stack exceeds 1000000000-byte limit
runtime: sp=0xc03c6c0378 stack=[0xc03c6c0000, 0xc05c6c0000]
fatal error: stack overflow

Crashes !!
Serious Security Vulnerability
(DNS hosting services)

†https://github.com/coredns/coredns/issues/4378

Fixed by adding a loop counter† – “For now
it’s more important to protect ourselves
than to give the client a valid answer”

Example Bugs

https://github.com/coredns/coredns/issues/4378

37

Example Bugs

https://gitlab.isc.org/isc-projects/bind9/-/issues/2384

Domain Name Type Data

campus.edu. SOA ns1.exm. …

foo.campus.edu. NS ns1.campus.edu

ns1.campus.edu. A 1.1.1.1

Query: ⟨anything.foo.campus.edu., A⟩

Performance Bug in BIND

 BIND does not return the glue record

 Response from BIND “This report turns out to be
very interesting. Here is what I managed to find out”

 BIND uses a “glue cache” to speed up the
identification of glue records, but it had two
unrelated errors.
 If the cache lookup fails, then glue records are

supposed to be searched for in the zone file,
but the latter was never happening.

 glue records for siblings domain nameservers
were accidentally never searched for at all.

Response from POWERDNS, KNOT, NSD:

Authority Section:
foo.campus.edu. NS ns1.campus.edu

Additional Section:
ns1.campus.edu. A 1.1.1.1

Open issue - May 2021 milestone

https://gitlab.isc.org/isc-projects/bind9/-/issues/2384

38

Example Bugs

https://github.com/NLnetLabs/nsd/issues/152

Domain Name Type Data

booksonline. SOA ns1.exm. …

buy.booksonline. CNAME www.*.booksonline.

Query: ⟨buy.booksonline., A⟩

Data Structure Bug in NSD

 BIND, KNOT, POWERDNS return with NXDOMAIN as
CNAME target does not exist

 RCODE is important as resolvers use it to determine
whether domains exist or not

 NSD responded - “It has to do with the internal data
structure for storing domains in the memory of
NSD, there a domain struct is created for the right
hand of the CNAME, and it is set to be non-existing.
The is_existing was not checked for the wildcard
expansion, and this is fixed by the commit.
…Thanks for the report!”

Response from NSD:

RCODE: NOERROR
Answer Section:

buy.booksonline. CNAME www.*.booksonline.

Fixed the issue

https://github.com/NLnetLabs/nsd/issues/152

39

Example Bugs

CNAME Bug in YADIFA

Domain Name Type Data

dept.com. SOA ns1.exm. …

www.cs.dept.com. CNAME cs.dept.com.

cs.dept.com. CNAME dept.com

dept.com. A 2.2.2.2

Query: ⟨www.cs.dept.com., A⟩

 Expected response is to rewrite the query twice and
return the IP record

 YADIFA rewrote it only once and was not following
the CNAME chains.

 CNAME chains are used extensively by CDNs so its
important to follow

 YADIFA acknowledged and said – “The rerun of the
query was incorrectly disabled, the issue is fixed
and will be updated on github on our next update of
the code.”

Fixed the issue

https://github.com/yadifa/yadifa/issues/10

https://github.com/yadifa/yadifa/issues/10

40

Example Bugs

DNAME-DNAME Loop Bug in KNOT

Domain Name Type Data

corp. SOA ns1.exm. …

corp. NS ns1.com.

corp. DNAME us.corp.

Query: ⟨www.corp., NS⟩

 Query is rewritten using DNAME to:
www.corp. CNAME www.us.corp.

 The rewritten query will again be rewritten using DNAME to:
www.us.corp. CNAME www.us.us.corp.

 Leads to an infinite recursion !!

 BIND applies DNAMEmultiple times and stops
when limit reaches 17

 POWERDNS returns SERVFAIL

 KNOT and NSD applied DNAME only once
 Works here but had to be applied multiple

times when there is no loop
 Both fixed the issue †

† https://github.com/NLnetLabs/nsd/issues/151
† https://gitlab.nic.cz/knot/knot-dns/-/issues/714

https://github.com/NLnetLabs/nsd/issues/151
https://gitlab.nic.cz/knot/knot-dns/-/issues/714

41

Example Bugs

DNAME-DNAME Loop Bug in KNOT

Domain Name Type Data

corp. SOA ns1.exm. …

corp. NS ns1.com.

corp. DNAME us.corp.

Query: ⟨www.corp., NS⟩

 Query is rewritten using DNAME to:
www.corp. CNAME www.us.corp.

 The rewritten query will again be rewritten using DNAME to:
www.us.corp. CNAME www.us.us.corp.

 Leads to an infinite recursion !!

 BIND applies DNAMEmultiple times and stops
when limit reaches 17

 POWERDNS returns SERVFAIL

 KNOT and NSD applied DNAME only once
 Works here but had to be applied multiple

times when there is no loop
 Both fixed the issue †

 KNOT had a test suite comparing responses with
BIND and a test is mentioned as testing the
infinite loop as this
 Test zone file was not properly constructed,

and that error led to having no loop
 Fixed it and went with single response

unlike 17 for a loop

† https://github.com/NLnetLabs/nsd/issues/151
† https://gitlab.nic.cz/knot/knot-dns/-/issues/714
https://gitlab.nic.cz/knot/knot-dns/-/issues/703

https://github.com/NLnetLabs/nsd/issues/151
https://gitlab.nic.cz/knot/knot-dns/-/issues/714
https://gitlab.nic.cz/knot/knot-dns/-/issues/703

42

Test Generation Module

43

Test Generation Module

Formal Model †RFCs
1034, 4592, 6672, …

Declarative (Mathematical)
specification of the nameserver logic

English

†GROOT: Proactive Verification of DNS Configurations – Siva Kakarla et al., SIGCOMM 2020

https://dl.acm.org/doi/10.1145/3387514.3405871

44

Test Generation Module

Formal ModelRFCs
1034, 4592, 6672, …

1
2

3

4

Constraints

Solve(, , , ,) for inputs→ ⟨𝑧1, 𝑞1⟩, ⟨𝑧2, 𝑞2⟩, … ⟨𝑧𝑛, 𝑞𝑛⟩1 2 3 4

Symbolic
Execution

45

Test Generation Module

Formal Model
RFCs

1034, 4592, 6672, …
Executable Version in Zen

An executable version of formal model is implemented
in Zen, a domain-specific modeling language embedded

in C# with built-in support for symbolic execution

46

Test Generation Module

Formal Model
RFCs

1034, 4592, 6672, …

An executable version of formal model is implemented
in Zen, a domain-specific modeling language embedded

in C# with built-in support for symbolic execution

Symbolic
Execution

Tests

⟨zone file1, query1⟩

⟨zone file2, query2⟩

⟨zone filen, queryn⟩

…

Executable Version in Zen

47

Test Generation Statistics

Model Case Number of Tests

E1 3180

E2 12

E3 96

E4 6036

W1 60

W2 24

W3 18

D1 230

R1 2980

R2 37

Total 12,673

Length of each domain name and the
number of records in the zone ≤ 4

48

Differential Testing

TestsTests

Tests

BIND NSD KNOT PDNS

Response Grouping

Single group > 1 group

COREDNS YADIFA TRUSTDNSMARADNS

12,673

49

Differential Testing

TestsTests

Tests

BIND NSD KNOT PDNS

Response Grouping

Single group > 1 group

COREDNS YADIFA TRUSTDNSMARADNS

12,673

4,433

50

Differential Testing

TestsTests

Tests

BIND NSD KNOT PDNS

Response Grouping

Single group > 1 group

COREDNS YADIFA TRUSTDNSMARADNS

12,673

4,433 8,240

Too many to
check manually!

51

Differential Testing

TestsTests

Tests

BIND NSD KNOT PDNS

Response Grouping

Single group > 1 group

COREDNS YADIFA TRUSTDNSMARADNS

12,673

4,433 8,240

Too many to
check manually!

More test failures than
bugs (root causes)

Fingerprinting

52

Model
Case

Number of
Tests

Number of
Tests Failing

E1 3180 239

E2 12 10

E3 96 12

E4 6036 5312

W1 60 33

W2 24 21

W3 18 16

D1 230 65

R1 2980 2529

R2 37 3

 Fingerprint failed tests

Fingerprinting

53

Model
Case

Number of
Tests

Number of
Tests Failing

E1 3180 239

E2 12 10

E3 96 12

E4 6036 5312

W1 60 33

W2 24 21

W3 18 16

D1 230 65

R1 2980 2529

R2 37 3

 Fingerprint failed tests

 Based on model case and the unique
implementations in each group from the
responses

Fingerprinting

54

Model
Case

Number of
Tests

Number of
Tests Failing

E1 3180 239

E2 12 10

E3 96 12

E4 6036 5312

W1 60 33

W2 24 21

W3 18 16

D1 230 65

R1 2980 2529

R2 37 3

 Fingerprint failed tests

 Based on model case and the unique
implementations in each group from the
responses

 Example fingerprint – 〈R1, {NSD, KNOT,
POWERDNS, YADIFA}, {BIND, COREDNS},

{TRUSTDNS, MARADNS}⟩

Fingerprinting

55

Model
Case

Number of
Tests

Number of
Tests Failing

E1 3180 239

E2 12 10

E3 96 12

E4 6036 5312

W1 60 33

W2 24 21

W3 18 16

D1 230 65

R1 2980 2529

R2 37 3

 Fingerprint failed tests

 Based on model case and the unique
implementations in each group from the
responses

 Example fingerprint – 〈R1, {NSD, KNOT,
POWERDNS, YADIFA}, {BIND, COREDNS},

{TRUSTDNS, MARADNS}⟩

 Unlikely for different unique bugs to
have the same fingerprint

Fingerprinting

56

Model
Case

Number of
Tests

Number of
Tests Failing

Number of
Fingerprints

E1 3180 239 7

E2 12 10 5

E3 96 12 3

E4 6036 5312 11

W1 60 33 8

W2 24 21 9

W3 18 16 1

D1 230 65 4

R1 2980 2529 27

R2 37 3 1

 Fingerprint failed tests

 Based on model case and the unique
implementations in each group from the
responses

 Example fingerprint – 〈R1, {NSD, KNOT,
POWERDNS, YADIFA}, {BIND, COREDNS},

{TRUSTDNS, MARADNS}⟩

 Unlikely for different unique bugs to
have the same fingerprint

Fingerprinting

57

Bugs Found

†Implementations with unreported issues due to missing or unimplemented features

58

Testing New Implementations

1. Generate a Docker image

2. Start a container with a host port mapped to port 53 of the container

3. A small Script to:
 Stop the running server in the container
 Copy the test zone file
 Modify the configuration (metadata)
 Start the server

4. Pick other implementations to compare with

59

Custom Tests

Tests

Zen Test Generation

Differential Testing

FERRET

60

Custom Tests

Tests

Zen Test Generation

Differential Testing

FERRET
Custom Tests

61

Organization Zone Files

Tests

Zen Test Generation

Differential Testing

FERRET
Custom Tests

Zone Files

How do we test for any implementation-
specific behaviors on our zone files?

62

Organization Zone Files

Tests

Zen Test Generation

Differential Testing

FERRET
Custom Tests

How do we test for any implementation-
specific behaviors on our zone files?

Zone Files

Use GROOT to generate query equivalence classes

(see our paper/tool for details)

63

Organization Zone Files

Tests

Zen Test Generation

Differential Testing

FERRET
Custom Tests

How do we test for any implementation-
specific behaviors on our zone files?

Zone Files

Use GROOT to generate query equivalence classes

(see our paper/tool for details)

{𝑞1, 𝑞2, 𝑞3, … }
{𝑞𝑥}

{𝑞𝑎 , 𝑞𝑏, … }

Query
Equivalence

Classes

64

Organization Zone Files

Tests

Zen Test Generation

Differential Testing

FERRET
Custom Tests

How do we test for any implementation-
specific behaviors on our zone files?

Zone Files

Use GROOT to generate query equivalence classes

(see our paper/tool for details)

{𝑞1, 𝑞2, 𝑞3, … }
{𝑞𝑥}

{𝑞𝑎 , 𝑞𝑏, … }

Query
Equivalence

Classes

65

No Two Nameservers Agree!

 Nobody agrees with RFCs too!

 RFCs do the job well but there are gaps and ambiguities
 CNAME loops should be signaled as errors (RFC 1034)

▪ At what point?
▪ Should it be unrolled at all?
▪ Should the loop RRs be returned?

 Is a synthesized CNAME from DNAME perfect response to a CNAME query?

 When RFCs are open to interpretation, implementations make choices based on –
performance, resource constraints, safety, …

 Should resolvers account for different choices? (complex resolvers, interoperability issues)
Or
Should the RFCs be more verbose and stringent?

66

Conclusion

 FERRET – Our tool for automatic test generator for
nameserver implementations

 Generates high-coverage test suites stress testing
many corner cases of RFCs

 Differential testing to compare multiple
implementations

 Tested 8 implementations

 Found 30 new bugs

 https://github.com/dns-groot/Ferret,
https://github.com/dns-groot/groot

 Reach me at: sivakesava@cs.ucla.edu

https://github.com/dns-groot/Ferret
https://github.com/dns-groot/groot

