Fragmentation, truncation, and timeouts: are large DNS messages falling to bits?

Giovane C. M. Moura¹, Moritz Müller^{1,2}, Marco Davids¹, Maarten Wullink¹, Cristian Hesselman^{1,2}

1: SIDN Labs, 2: University of Twente

DNS OARC 35 Virtual conference 2021-05-07

- this presentation is from a paper presented at PAM2021
 - PDF: http://shorturl.at/iqtB0
- The DNS is one of the core protocols on the Internet [5]
- Every web page visit requires DNS queries
- DNS uses both UDP and TCP [4]:
 - DNS/UDP: super fast (1 RTT)
 - DNS/TCP: zone transfer and UDP-fall back

- Transport limits:
 - Vanilla DNS/UDP: max 512 bytes
 - DNS/TCP: <no strict limit>
 - The issue: DNS/UDP with EDNS-0 [2]: up to 65k bytes
- If a response is too large:
 - For the network MTU: packets will be either FRAGMENTED [1] or DISCARDED: may lead to unreachability
 - For the **server**: then **TRUNCATE** it, and client should ask via TCP
- **Question**: how big is this of a problem on DNS?

We investigate the issue in production traffic

- Analyze traffic to a ccTLD (The Netherlands' .nl)
 - 3 months of data (2019 and 2020)
 - 164 billion queries from 3M unique IPs and 46k ASes

	July 2019		July	July 2020		October 2020	
	IPv4	IPv6	IPv4	IPv6	IPv4	IPv6	
Queries/responses	29.79B	7.80B	45.38B	15.87B	48.58B	16.62B	
UDP	28.68B	7.54 B	43.75B	15.01B	46.94B	15.87B	
UDP TC off	27.80B	7.24B	42.06B	13.88B	45.49B	14.93B	
UDP TC on	0.87B	0.31B	1.69B	1.14B	1.44B	0.93B	
Ratio (%)	2.93%	3.91%	3.72%	7.15%	2.96%	5.59%	
TCP	1.11B	0.25B	1.63B	0.85B	0.36B	0.20B	
Ratio (%)	3.72%	3.32%	3.59%	5.37%	3.17%	5.09%	
Resolvers							
UDP TC off	3.09M	0.35M	2.99M	0.67M	3.12M	0.62M	
UDP TC on	0.61M	0.08M	0.85M	0.12M	0.87M	0.13M	
TCP	0.61M	0.08M	0.83M	0.12M	0.87M	0.13M	
ASes							
UDP TC off	44.8k	8.3k	45.6k	8.5k	46.4k	8.8k	
UDP TC on.	23.3k	4.5k	27.6k	5.4k	28.2k	5.6k	
TCP	23.5k	4.3k	27.3k	5.2k	27.9k	5.4k S 🚺	LAB

Table 1: Evaluated datasets of .nl zone

- 1. How common are large DNS responses?
- 2. How common is DNS truncation and server-side fragmentation?
- 3. Do resolvers fall back to TCP after truncation?
- 4. Impact of DNS Flag day 2020 on buffer configurations

How common are large responses?

Figure 1: Response size CDF for .nl: July 2019

- 99.99% of responses from .nl are smaller than 1232 bytes
- No need to FUD. Google Public DNS says 99.7% are smaller than 1232 bytes.

How often server-side fragmentation occurs?

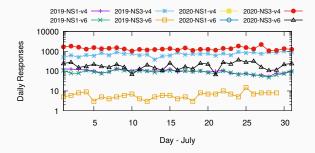


Figure 2: UDP fragmented queries for .nl authoritative servers.

• **Rarely**: <10k queries/day (from 2.2B/daily)

What about in-network fragmentation?

	Large	Small		
EDNS0 buffer	4096	512		
Query	ANY NS .nl	Ans1.dns.nl		
Target	ns3.dns.nl			
Response Size	1744	221		
Protocol/IP	UDP/IPv4			
Active Probes	9323	9322		
\cap	8576			
Queries	557047	555007		
\cap	512351	510575		
OK	473606	497792		
timeout	38745(6.9%)	12783 (2.5%)		

Table 2: Atlas measurements for large and small responses. Datasets:[6]

- It only occurs for IPv4
- Our vantage point (authoritative servers) allow to see if clients received responses
- We then measure with Ripe Atlas: 8500 probes over 1 day
 - 1. 2.5% of small responses timeout (221 bytes)
 - 2. 6.9% of large responses (1744 bytes) timeout
 - 3. (similar figures with previous works [3, 7])

How common is DNS truncation?

	July 2019		July 2020		October 2020	
	IPv4	IPv6	IPv4	IPv6	IPv4	IPv6
Queries/responses	29.79B	7.80B	45.38B	15.87B	48.58B	16.62B
UDP	28.68B	7.54 B	43.75B	15.01B	46.94B	15.87B
UDP TC off	27.80B	7.24B	42.06B	13.88B	45.49B	14.93B
UDP TC on	0.87B	0.31B	1.69B	1.14B	1.44B	0.93B
Ratio (%)	2.93%	3.91%	3.72%	7.15%	2.96%	5.59%

Table 3: Evaluated datasets of .nl zone

In the paper:

- most queries truncated to 512 bytes
- Large EDNS0 buffers size don't prevent truncation

So resolvers fall back to TCP after truncation?

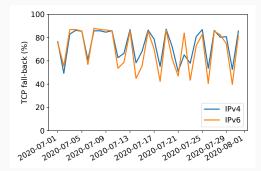
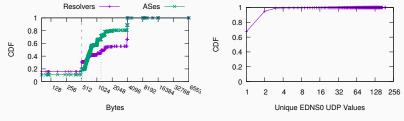



Figure 3: TC replies with TCP retries

79-85% of truncated responses are followed by TCP

What are the most common EDNS0 values

(a) EDNS0 Values distribution

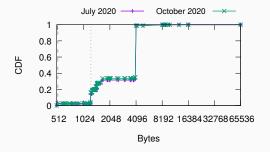

(b) Unique EDNS per resolver

Figure 4: EDNS0 per resolver and values: July 2020

DNS Flag day 2020

- To avoid fragmentation, member of DNS community proposed 1232 byte limit for DNS/UDP
- Resolvers can advertise this value as their EDNS0 value
- What was the uptake? (not much)

			Resolvers	11338	
	July 2020	October 2020	from 4096 bytes	7881	
Resolvers	3.78M	3.84M	from 1680 bytes	1807	
\cap	1.85 M		from 512 bytes	1252	
UDP Queries	60.3B	62.81B	rest	398	
\cap	117.54 B		ASes	958	
(a) Before and After Datasets			Queries	3.01B	
			(b) EDNS0 1232 resolvers		

Table 4: DNS Flag Day datasets and Changing Resolvers

Are DNS responses falling to bits?

- 1. Most DNS responses are small, so little fragmentation risk
- 2. Server-side fragmentation is minimal
- 3. 2-7% of .nl UDP responses are truncated
- 4. 79-85% are followed by a TCP query
- 5. DNS Flag Day 2020 uptake was not very noticiable yet

References i

[1] BONICA, R., BAKER, F., HUSTON, G., HINDEN, R., TROAN, O., AND GONT, F.

IP Fragmentation Considered Fragile.

RFC 8900, IETF, Sept. 2020.

[2] DAMAS, J., GRAFF, M., AND VIXIE, P.

Extension Mechanisms for DNS (EDNS(0)). RFC 6891, IETF, Apr. 2013.

[3] HUSTON, G.

Dealing with IPv6 fragmentation in the DNS.

https://blog.apnic.net/2017/08/22/
dealing-ipv6-fragmentation-dns/, Aug. 2017.

[4] MOCKAPETRIS, P.

Domain names - concepts and facilities.

RFC 1034, IETF, Nov. 1987.

[5] MOURA, G. C. M., DE O. SCHMIDT, R., HEIDEMANN, J., DE VRIES, W. B., MÜLLER, M., WEI, L., AND HESSELMAN, C.

Anycast vs. DDoS: Evaluating the November 2015 root DNS event.

In *Proceedings of the ACM Internet Measurement Conference* (Santa Monica, California, USA, Nov. 2016), ACM, pp. 255–270.

[6] RIPE NCC.

RIPE Atlas measurement IDS.

https://atlas.ripe.net/measurements/ID, Oct. 2020.

, where ID is the experiment ID: large:27759950, small:27760294.

[7] VAN DEN BROEK, G., VAN RIJSWIJK-DEIJ, R., SPEROTTO, A., AND PRAS, A.

DNSSEC meets real world: dealing with unreachability caused by fragmentation.

IEEE communications magazine 52, 4 (2014), 154–160.

