Keep my privacy:
DNS over HTTPS over CGN, public NAT64
(or IPv6 transition technologies, Open HTTP proxies)

Kazunori Fujiwara, JPRS
fujiwara@jprs.co.jp
Privacy issues of DNS over HTTPS (DoH)

• Sensitive data in DNS queries
 – Time
 – Query source IP address
 – DNS query (name, type, class)
• DoH hides DNS query (name, class, type) by encryption
• Privacy issues
 – query source IP address is not protected
 – DoH providers can collect the whole data

• How can I hide my IP address from DoH providers?

DoH provider
Can collect query information
Time
Query source IP address
Query name, type, class

Tapping: Even if you tap it, the query is protected by DoH (TLS).

Time
Query source IP address
Encrypted (query name, type, class)
How to hide query source IP address?

• Previous proposals also tried to hide query source IP addresses
 – Tor’s DNS … requires Tor network
 – Oblivious DNS (DoH) … requires service providers

• Simpler solutions to hide (I’m happy if I can do it by myself)
 – “The best place to hide a leaf is in a forest.”
 – We can hide query source IP addresses under
 • IPv4 NAT (CGN, NAT64, IPv6 transition technologies)
 • Open HTTP(S) Proxy (or Tor HTTPS)

• And more, we can use different IP address (direct connection) to access web servers
Idea: DoH over CGN

- We can hide query source IP address under low-priced mobile network
 - In Japan, it is easy to purchase a SIM card
 - 100MB/month for 190 JPY (< 2 USD)
 - Currently, I’m using 3 SIM cards plan 3GB/1 month) for 1,155 JPY

- Many MVNO/MNO operators use Carrier Grade NAT (CGN) for users’ net
 - Some of users under the same CGN may use DoH

- Usage scenario
 - Prepare DoH forwarder in MVNO network
 - Access web servers from different IP address (v4, v6)
Idea: DoH over NAT64

• Public NAT64 services: see https://nat64.xyz/
 – They translates/rewrites source IPv6 addresses to (shared) IPv4 address

• Usage scenario
 – Send DoH queries to IPv4 DoH servers via NAT64
 • NAT64 rewrites IPv6 DoH query source addresses
 • It hides source IPv6 address from DoH servers
 – Special DoH forwarder required
 • That connect to NAT64 IPv6 address (NAT64 prefix + DoH server's IPv4 address)
 – Access web servers from different IP address (4,6)
 – To increase anonymity
 • multiple NAT64 services/prefixes
 • multiple DoH providers
Idea: DoH over IPv6 transition technology

- IPv4 over IPv6 services (DS-Lite, MAP-E)
 - In many cases, multiple subscribers share one IPv4 address
 - When multiple users use DoH under the shared IPv4 address, DoH providers can know one global IPv4 address only

- Use scenario
 - Disable IPv6 at a client
 - Or, prepare DoH forwarder that connects to DoH server via IPv4 only

- Problem
 - It is weak because source IP address of DoH and web access are the same
 - Disabling IPv6 goes against IPv6 transition
Idea: DoH over open HTTP(S) proxies

- Because
 - Proxies cannot know the DoH query
 - DoH provider cannot know original query source IP address
- Usage scenario
 - Send DoH queries via (open)HTTPS proxy
 - Access web servers using direct HTTPS connection
 - Requires special browsers or DoH forwarder that send DoH queries via HTTP proxy
- Problem: We cannot get permissions to use open proxies
- Solution
 - DoH over Tor
 - Providers may offer special open HTTPS proxies that can connect to public DoH servers only
Tool: getting my IPv4 address via DNS

• Akamai provides "whoami.akamai.net"
 – Example: dig +short A whoami.akamai.net
 – It returns resolver's IP address in use

• We can use the service to know my IP address
 – First, dig akamai.net ns
 • returns akamai.net name server addresses
 – Next, "dig @ (akamai.net IPv4 server address) whoami.akamai.net A"
 • returns my IPv4 address
 – dig @ (akamai.net IPv6 server address) whoami.akamai.net AAAA
 • returns my IPv6 address
Tools: DoH forwarder

• DoH forwarder
 – Receives queries from clients via port 53 UDP, TCP
 – Forwards queries to servers via DoH

• doh-forwarder
 – https://github.com/kpadron/doh-forwarder
 – Receives queries from clients via port 53 UDP, TCP
 – Forwards queries to a DoH server

• fujiwara's DNS Forwarder: I made my own DNS forwarder
 – Written in perl (depends on Net::DNS and IO::Socket::SSL)
 – Receives queries from clients via UDP, TCP, (DoT), DoH
 – Forwarding queries to a server via UDP, TCP, (DoT), DoH
 – Each TCP (DoT, DoH) connection is closed on every query
 • It reduces performance, however, it will improve privacy
 – NAT64 is supported (uses IPv4 server and rewrites to NAT64 address)
 – caching functions
 – Limited functions: No ACLs, No performance, ...
 – Usage: DNSforwarder.pl -u UDP_listen -t TCP_listen -U UDP_server -H DoH_URL -N NAT64 prefix
 • UDP_server is used to resolve hostnames of DoH_URL on this usage
Evaluation of DoH over CGN (1)

• Environment
 – MVNO: Excite mobile (https://bb.excite.co.jp/exmb/sim/)
 – Android phone as WiFi/NAT router (WiFi Tethering)
 • Outgoing(ccmni1) IP address was 100.73.209.188 (RFC 6598 Shared Address Space)
 • WiFi(ap0) IP address was 192.168.43.208/24
 – Prepare DoH forwarder machine
 • WiFi IP address was 192.168.43.208 (offered by phone’s NAT)
 • Ethernet IP address was 192.168.1.99 (by static)
 – Does the CGN hide my IP address?
 • dig @zc.akamaitech.net whoami.akamai.net A
 – returned 163.49.209.23 which is MVNO’s shared address
 • Then, I can hide my IP address from DoH providers
Evaluation of DoH over CGN (2)

- Run dns-forwarder at DoH forwarder machine

  ```
  # python3.7 doh-forwarder.py -l 192.168.1.99 -p 53
  [INFO] Starting DNS over HTTPS forwarder
  [INFO] Args: {'listen_address': ['192.168.1.99'],
  'listen_port': [53], 'upstreams': ['https://1.1.1.1:443/dns-query', 'https://1.0.0.1:443/dns-query'], 'tcp': False}
  [INFO] Starting UDP server listening on 192.168.1.99#53
  ```
Evaluation of DoH over CGN (3)

- Checked responses from DoH forwarder
 - Client: `dig @DoHforwarder whoami.akamai.net`

  ```
  whoami.akamai.net. IN A
  ;; ANSWER SECTION:
  whoami.akamai.net. 26 IN A 162.158.117.105
  ;; Query time: 80 msec  Acceptable latency
  ;; SERVER: 192.168.1.99#53(192.168.1.99)
  ;; WHEN: Mon Jan 04 20:53:23 JST 2021
  ;; MSG SIZE  rcvd: 62
  ```

- Finally, changed the PC's resolver setting to DoH forwarder (192.168.1.99)

- Then, all queries from the PC went to DoH providers via CGN
Evaluation of DoH over NAT64 (1)

• Choose one NAT64 prefix from https://nat64.xyz/
 – Provider: Kasper Dupont
 – Location: The Netherlands / Amsterdam
 – NAT64 prefix: 2a00:1098:2b::/96
 – Agree and follow the terms of service: https://nat64.net/tos
 • No Abuse: It is an experiment / temporary
 • No flood: DNS queries from a person are limited
 • No illegal access: DoH server is not illegal, I think
 – “Does the NAT64 hide my IPv6 address?”
 • “dig @2a00:1098:2b::23.74.25.192 whoami.akamai.net A”
 NAT64 prefix + IPv4 of akamai.net server
 returned 46.235.231.114 (nat64.dyndns.dk)
 – Which node answered from NAT64?
 • “dig @2a00:1098:2b::1.1.1.1 id.server CH TXT”
 returned TXT “AMS”
 ;; Query time: 238 msec
 (from Japan)
Evaluation of DoH over NAT64 (2)

- Start special DoH forwarder
 - DoH forwarder’s listen address is 203.178.129.11 port 53
- DoH server address is https://cloudflare-dns.com/dns-query
- to resolve “cloudflare-dns.com”, the proxy uses 8.8.8.8 resolver
 → cloudflare-dns.com IN A 104.16.249.249
- NAT64 address is 2a00:1098:2b::
 - DNSforwarder.pl rewrites DoH server’s IP address to NAT64 prefix + IPv4 address 2a00:1098:2b::104.16.249.249 at connect
Evaluation of DoH over NAT64 (3)

• dig @DoHforwarder id.server CH TXT
 – ;; ANSWER SECTION:
 – id.server. 1 CH TXT "AMS"
 Cloudflare's AMS node
 – ;; Query time: 955 msec

• dig @DoHforwarder www.dns-oarc.net AAAA
 – ;; ANSWER SECTION:
 – www.dns-oarc.net. 120 IN AAAA 2620:ff:c000::198
 – ;; Query time: 1035 msec
Limitations of DoH over CGN/NAT64

- DoH over CGN / NAT64 / Open Proxies nullify the traffic control of CDNs.
- DoH providers can track by using TLS session information
 - My DNS Forwarder closes TCP/TLS session on every query
- Public NAT64 services are located in Europe only
 - High latency (1 second !) from Japan
 - because UDP RTT is 238ms
Conclusion

• DoH providers can know both query source IP addresses and DNS queries
 – These are the sensitive dataset for privacy
• To protect our privacy, we can hide our source IP addresses by existing tools
 – DoH over CGN with low priced MVNO SIM: feasible
 – DoH over NAT64: feasible in European region
 – DoH (with IPv4 address) over DS-Lite or MAP-E may hide client IP address
 – DoH over open HTTP(S) proxies (or Tor): feasible (not tested)

• Any questions and suggestions?