
RFC1918 updates

on servers

near M and F roots
Andre Broido, Marina Fomenkov, Young Hyun, kc claffy,

work in progress

C A I D A
CAIDA / SDSC / UCSD

www.caida.org

CAIDA–OARC Workshop

San Jose, 2005-07-25

1



Plan

• Background

• Windows traffic/sources’ prevalence:
– Application layer: DNS payload
– Transport layer: TCP header
– Network layer: IP header

• Conclusion

2



History

• 1996: RFC1918 reserves address blocks
10/8, 172.16/12, 192.168/16 for private use
People start using them for NATs

• 1997: RFC 2136 - dynamic DNS updates

• 2000: root servers see sharp increase
in PTR updates for private addresses

Evi Nemeth starts looking into this and other problems,
suspects Windows

3



Remedy: AS 112 project

• Originally, Bill Manning introduced
three servers authoritative for RFC1918 space

• Two servers process queries, one – updates

• prisoner.iana.org (192.175.48.1) – updates

• query servers: blackhole-1, blackhole-2

• in 2002 Paul Vixie and other operators distributed
this service using anycast with origin AS 112

• In Jul.2004 12+ ASes provide this service
– 40% Route Views peers see ISC
– some peers see AS 7500 (WIDE)

• Our data consists of prisoner’s nameserver logs
(blackholes’ traffic is not logged)

• We have Palo Alto and Osaka logs

4



2002 Apr Jul Oct 2003 Apr Jul Oct 2004 Apr Jul Oct 2005
0 0

1e+06 1e+06

2e+06 2e+06

3e+06 3e+06
up

da
te

s 
pe

r 
ho

ur
Oct 2004
Nov-Dec 2004
Jan 2005

RFC1918 DNS updates, May 2002--Dec 2004
Top: hazel (ISC). Bottom: Server near M-root

2002 Apr Jul Oct 2003 Apr Jul Oct 2004 Apr Jul Oct 2005
0 0

1e+06 1e+06

2e+06 2e+06

3e+06 3e+06

up
da

te
s 

pe
r 

ho
ur

Server at Osaka (below) has less traffic,
but higher spikes
The changes are abrupt, not long-term trends
Data is divesrse – 3 days of Palo Alto logs cover 16%
prefixes, 30% ASes
Highest number of updates per second is 3889 in Apr
2004, Osaka

5



Why are leaking updates are bad?

• User’s privacy is at stake

• Updates contain too much private data
– machine name – often person’s name
– internal (RFC1918) IP address
– global (ISP’s) IP address
– TCP reveals OS, service pack

• Useful for hacking, social engineering

• Queries reveal less (only IPs), no TCP

• In addition, operators need to install and maintain
clusters of AS112 nodes all over the world

Recall that updates arrive at prisoner.iana.org
Will study prisoner’s traffic, skip blackholes

6



Questions

• Which OSes are doing updates?

• What is the right way to do dynamic
DNS updates for RFC1918 addresses?

7



We found these two statements to be true

• Most prisoner’s packets come from Windows sources

• For most prisoner’s source IPs, all observed transac-
tions came from Windows hosts

Here ‘most’ means 96-98%
All our numbers are in that range
The situation is different for blackholes, but we do not
study them here

8



Verification method: induction/closure

• Suppose that we established Windows origin for some
packets

• Classify all related packets (such as packets with the
same source IP and source port) as coming from
Windows too

• Similar approach worked very well for p2p traffic

From the first glance, it might be possible to attribute all
packets with the same source IP to Windows. However,
NATs can multiplex systems with different OSes over the
same source IP

9



How do we start OS fingerprinting?

• Need to find ‘seed’ packets for which we know their
OSes. Will use:
– Application layer: DNS payload data
– Transport layer: TCP header
– Network layer: IP header
– Link/Network layer: Spectroscopy

• In some cases (e.g. root server traffic) can only use
IP/UDP header

10



Summary of the proof

• Whatever layer we look at, we see evidence that pack-
ets came from Windows hosts.

• For any layer data that points to Windows constitutes
96-98% of packets, flows, IPs etc.

• Three independent ‘witnesses’ (application, transport
and network layer) tell us the same story (97% of vol-
ume is Windows) with minor variations – the story
must be true.

• This method comes from Bayesian Epistemology

11



Why do we need this study of updates’ ori-
gin OS?

• Didn’t we find with spectroscopy in 2002 that updates
come from Windows?
– Spectroscopy shows that many sources have the

same periods as Windows machines (e.g one up-
date each hour)

– It does not guarantee that they are Windows
– It does not give a precise fraction of Windows
– We did not estimate traffic since nameserver logs

don’t show packet counts
– Many systems go on and off and this destroys

their periods

• Rationale: We still see the update volume growing,
need to act

• Will make quantitative analysis with richer data source

12



Data sources

• Two 5-min AS112 packet traces taken at noon:

• Feb 28 2005 with 2.5 M packets, 114k source IPs

• Mar 17 2005 with 2.1 M packets, 94.5k source IPs

• packet rates of up to 6300 pps

• prisoner receives 75-77% packets (90% TCP, 10%
UDP)

• blackholes receive 10-11%, only UDP packets

More workload info in the paper

13



Roadmap: You are here

• Application layer: DNS payload

• Transport layer: TCP header

• Network layer: IP header

14



Application layer

• 2002 lab study: Windows systems:
– try secure update using Transaction Signature, RFC

2845
– start by establishing secret keys with TKEY record,

RFC 2930
– do it by TCP three times in a row

DNS rarely uses TCP (except for AXFR/IXFR)
The fact of TCP use points to Windows

15



Components of a TKEY record

• Key name

• Algorithm name

• Data used for computing secret key

query: 910533066770-2. TKEY IN
answer: 910533066770-2. TKEY ANY TTL=0
gss.microsoft.com...(binary data)...
NTLMSSP...(binary data)...C27ALTEER

A TKEY record ends in abbreviated source domain, leaks
private info

16



Microsoft name(s) in the DNS payload

• gss.microsoft.com: a key computation algorithm

• NTLMSSP = NT Lan Manager Security Support Provider

• TKEY record is misplaced
(Answer instead of Additional)

• Rarely, gss-tsig algorithm, RFC 3645 by Microsoft

• Plus: key name for gss-tsig always contains ‘-ms-’

• for gss-tsig, TKEY record is in the right place

• Safe to assume Windows origin for both algorithms

17



Application layer results

• Assume that TCP flows with either of two algorithm
names and NTLMSSP in TKEY are from Windows

• 98% TCP flows with 98.5% TCP packets are in this
category

• Flows by packet, Syn and TKEY count (a triple):
– 93% flows have (5,1,1) - 5 packets, 1 Syn, 1 TKEY
– add retransmission-like triples (6,1,1), (6,2,1), (6,1,2)
– add port reuse triple (10,2,2)

• these 5 groups of flows alone add up to 97% TCP
flows and packets.

TCP packets make up about 90% of prisoner’s traffic. so
we classified a solid chunk of data.
We also studied transport layer approach (in the paper),
which analyzes Syn packets with p0f tool and yields pre-
cisely the same results as app layer analysis.

18



Are we done?

• No – the above application- and transport-layer apply
to TCP traffic, do not cover UDP

• Whenever RFC1918 addresses are involved, UDP
and TCP can originate on different hosts, resolvers,
forwarders, firewalls and NATs.

• We know that UDP updates and TKEY exchanges
are part of one transaction

• Windows default: ”Use secure updates when inse-
cure update failed”

• Restoring this transaction is possible but complicated:
– There is no common port, DNS ID, domain etc.
– UDP update can come through a server, while

TCP comes through a proxy.

We need to develop passive OS fingerprinting methods
for UDP packets

19



Roadmap: You are here

• Application layer: DNS payload

• Transport layer: TCP header

• Network layer: IP header

20



New method

• Two previous methods (application and transport layer
approaches) have parallels in our previous work (p2p
traffic analysis and remote device fingerprinting)

• We now present a TTL-DF-ID method that we did not
try before

• We aim at getting an estimate of the number of Win-
dows packets, and an estimate of the error.

• We discuss this approach in greated detail than two
other approaches because it is much more robust
(uses only IP headers).

• We developed it with root server traffic analysis in
mind

• This estimation technique is universal and applies
outside DNS – for generic IP traffic

21



Network layer: IP TTL classification

• Studied packet traces for TTL vs. OS relation with
p0f (turned off TTL in p0f logic)

• The answer: 98.8% Syns with TTL=128 are from
Windows

• Also studied skitter replies to find common initial TTLs

• Answer: Powers of 2 – 32, 64, 128; 255, 120 plus
trace amounts of 50, 100, 150, 155, 180, 200

Will assume TTL=65-128 to come from Windows. p0f
predicts getting some false negatives, but only 1.2% false
positives.

22



Skitter reply TTL density

0 32 64 96 128 160 192 224 256
0

16

32

48

ho
p 

di
st

an
ce >1e-7, 0.02%

>1e-6, 0.33%
>1e-5, 2.55%
>1e-4, 17.5%
>0.001, 66.0%
>0.01, 13.6%
100-x

skitter replies density. San Jose and M-root monitors, 2005-04-01..17

0 32 64 96 128 160 192 224 256
received TTL

0

16

32

48

ho
p 

di
st

an
ce

 

>1e-7, 0.02%
>1e-6, 0.39%
>1e-5, 2.82%
>1e-4, 19.0%
>0.001, 64.2%
>0.01, 13.5%

X axis: destination’s reply packet TTL
Y axis: hop distance to the destination
Color: Density of reply packets
Top: San Jose monitor, April 01-17 2005, 5.5M replies
from 432k dest. Bottom: Osaka, M-root, April 01-16
2005, 2.4M replies from 288k dest.

23



Estimating iTTL - initial TTL

• Example: We are 1 hop from the destination

• Replies come back with initial TTL:

• hop + TTL = iTTL + 1;

• This property holds whenever distance is symmetric

• (the distance can be symmetric even when the path
is not)

• Will compute histograms for the sum

• Determine possible iTTLs from its maxima

• The rationale: there must be enough symmetric dis-
tances to create spikes

24



Estimating iTTL (cont’d)

0 8 16 24 32 40 48 56
hop distance

1e-05
0.0001

0.001
0.01
0.1

1
10

pe
rc

en
t

initial TTL estimate by hop+rep.ttl-1. San Jose monitor, Apr 01-17, 2005

0 32 64 96 128 160 192 224 256
reply ttl

0.0001
0.001

0.01
0.1

1
10

pe
rc

en
t

0 32 64 96 128 160 192 224 256
hop+rep.ttl-1

0.0001
0.001

0.01
0.1

1
10

pe
rc

en
t

X axis: hop distance, reply’s TTL, hop + reply TTL - 1.
Y axis: percent of skitter (SJ) replies at that value of X
Top: hop distance histogram
Middle: Reply TTL histogram
Bottom: hop distance + reply TTL - 1 histogram

25



TTL-related observations

• Unexpected iTTL values: 50, 100, 120, 150, 155,
180, 200.

• Common property: low ‘Kolmogorov complexity’ from
human perspective

• However, only 120 really matters, with 2.24% replies.

• Lesson: ‘diagonal’ histogram has much better spike
resolution

26



Estimating Windows’ packet share by iTTL

• 98% packets are in iTTL=128 range

• This number is roughly the same (within 0.6%) for
TCP, UDP and UDP-only sources

• With 98.8% true positives, 96.8% or more are Win-
dows’ packets

• Sounds right, given our TCP-based numbers

27



False negatives

A vendor’s default iTTL of 128 can result in observed
TTL under 64 or over 128 because:

• a user changed TTL setting by editing registry

• a firewall reset TTL or subtracted a large value

• TTL field got corrupted (e.g. bit 6 flipped from 1 to 0)

• packet came through a transient routing loop.

When these events produce false negatives they cause
underestimation of Windows’ share. We are mostly con-
cerned about false positives
We take false positives rate (non-Windows machines in
iTTL=128 group) from p0f’s 1.2%. Since UDP packet
count is small, error in this rate only affects Windows
share in about 10% of total volume. Even a 10% rate
would only change prisoner’s total by 1%.

28



Network layer: TTL-DF-IPID signatures

• So far we mostly analyzed the volume measure

• There may be many non-Windows sources with small
packet counts

• UDP-only sources make up 25-28% of source IPs.

• Need something comparable to p0f for UDP DNS
packets

29



TTL-DF-IPID signatures: our machines

• We experimented with nslookup on several systems

• Made a table of TTL, DF bit and IP ID triples

• For Windows, DF=0 and IP ID is non-zero

• Signatures’ mnemonic:
– TTL: L=64, W=128, S=255
– denote DF=0 by ’o’, DF=1 by ’i’
– IP ID = 0 by ‘z’, nonzero ID by ‘n’

• Common systems’ signatures:
– Won - Windows
– Lon - FreeBSD/MacX
– Liz - Linux

30



TTL-DF-IPID signatures for UDP-only sources

• UDP-only sources send 3.7% packets in March trace

• Windows’ signature Won is in 97% of them

• The source IPs with single signature Won make up
97.6% of all source IP

• The next most frequent signature is Lon (MacX or
FreeBSD), with 1.4% sources, 1.8% packets.

• Woz is next, much more frequent than IP ID = 0
would naturally occur (firewalls zeroed IP ID to avoid
Bellovin’s attack?)

• Lon Won – Windows and MacX or FreeBSD sharing
a source IP – comes fourth with 8 sources (0.04%)
and 121 packets (0.02%)

• This statistics remains almost unchanged for all UDP
sources and packets (details in the paper)

31



Conclusions

• Update rates are higher than in 2002

• Windows machines
– send 97-98% of packets
– make up over 96% of all sources

• while the share of systems that run Windows is 90%,
i.e. it is exceeded

32



Suggested changes

• Vendor:
– Send updates only to the hosts with RFC1918 ad-

dress
– Do not update PTR records by default (use man-

ual configuration)

• User:
– Do not run DHCP on Windows machines; home

routers do DHCP without DNS updates
– Change default config on your machine to not send

updates

33


