

A Measurement-based Investigation of DNS Hijacking

Shuai Hao Old Dominion University

Norfolk, Virginia, USA

Based on the Study

Rebekah Houser, Shuai Hao, Zhou Li, Daiping Liu, Chase Cotton, and Haining Wang. *A Comprehensive Measurement-based Investigation of DNS Hijacking*, *International Symposium on Reliable Distributed System* (**SRDS**), Sep. 2021.

/ Shuai Hao

• Assistant Professor, 2019 – present,

Department of Computer Science, Old Dominion University, Norfolk, Virginia, USA

- Postdoc Researcher, 2018 2019
 Center for Applied Internet Data Analysis (CAIDA), UC San Diego, La Jolla, California, USA
- Ph.D., 2017, Computer Science,
 College of William & Mary, Williamsburg, Virginia, USA

Research Overview

- Applying measurement, empirical, and data-driven approach to understand Internet Infrastructure and its security phenomena
 - Internet-Wide Vulnerability and Security
 - Internet Infrastructure and Measurement
- Data-Driven Security Analytics
- Cybercrime and Web security

Outline

- Background and Motivation
- Measurements
- Detection
- Discussion

Background and Motivation

(a) The basic flow of a typical DNS resolution

 Image: Nameserver
 Nameserver

 1
 DNS query
 2

 1
 DNS query
 2

 Stub Resolver
 4

 Malicious Response
 3

 Malicious Response
 0ff-path Attacker

Recursive/Caching

Victim

(b) Off-path spoofing attack

(c) MITM attack

(d) Domain hijacking

Authoritative

Background and Motivation

Background and Motivation

• Goal of our Study

- Conduct an analysis based on confirmed DNS hijacking attacks to characterize known hijacking attack
- > Identify features for potential defense or monitoring mechanism

Outline

- Background and Motivation
- Measurements
- Detection
- Discussion

Measurements – Passive DNS Replication

Measurements – Dataset

```
"rrname": "www.ietf.org",
"rrtype": "A",
"rdata": "4.31.198.44",
```

Data derived directly from DNS responses

"time_first": 1384865833, "time_last": 1389022219, "count": 59

Metadata added by tools building PDNS database

Measurements – Dataset

- Passive DNS Dataset
 - Input from a *global network* of sensors and from zone files
 - Data collected for over 10 years
 - > Contains over 130 billion sets of records with data

Measurements – Dataset

From news/stories/reports of DNS hijacking attacks or attack campaigns, we identified 34 such incidents that occurred over a period of 12 years (2008 to 2020)

We retrieved Indicators of Compromise (IOCs) for evidence of the attacks

	IP_A	NS _A	FQDN _H	<i>Apex_H</i>
Angler	454	0	22,571	5,249
Spammy Bear	1	0	4,007	4,007
Sea Turtle	33	5	30	21
Other	34	41	65	65

 IP_A = Attacker IP addresses, NS_A = Attacker nameservers, $FQDN_H$ = Hijacked FQDNs, $Apex_H$ = Apex domain of hijacked FQDNs

Measurements – Characterization

- Attacker infrastructure
- New rrnames in DNS records for hijacked domains
- Record Types Changed

Measurements – Infrastructure

- Autonomous Systems
- Shared Hosting

Measurements – Infrastructure

```
:: first seen: 2013-08-27 20:20:13 -0000
:: last seen: 2013-08-28 03:18:15 -0000
nytimes.com. IN NS ns1.syrianelectronicarmy.com.
nytimes.com. IN NS ns2.syrianelectronicarmy.com.
:: first seen: 2013-08-27 20:20:13 -0000
;; last seen: 2013-08-28 03:18:15 -0000
nytimes.com. IN A 141.105.64.37
;; first seen: 2013-06-17 08:01:54 -0000
;; last seen: 2013-08-28 02:11:40 -0000
ns1.syrianelectronicarmy.com. IN A 141.105.64.37
;; first seen: 2013-06-17 08:01:54 -0000
:: last seen: 2013-08-28 02:11:41 -0000
ns2.syrianelectronicarmy.com. IN A 141.105.64.37
```

Measurements - New rrnames

demo.example.net CNAME example.com

Measurements - New rrnames

Measurements - New rrnames

Measurements – Record Types Changed

RRTYPEs Changed	% Days	RRTYPEs Changed	% Days
А	29.63%	А	32.23%
NS A	20.99%	A AAAA	19.69%
NS CNAME A MX	11.11%	CNAME	14.93%
NS CNAME A	6.17%	AAAA	7.09%
NS A SOA	4.94%	A CNAME	6.01%
A AAAA	3.70%	MX	5.69%
NS	3.70%	A MX	1.88%
NS A AAAA SAO	3.70%	A AAAA CNAME	1.56%
NS A MX	2.47%	AAAA MX	1.52%
NS CNAME A AAAA SOA	2.47%	NS SOA A AAAA CNAME	0.82%
NS A MX SOA	2.47%	CNAME MX	0.81%
NS CNAME A AAAA MX SOA	2.47%	NS A CNAME	0.70%

Outline

- Background and Motivation
- Measurements
- Detection
- Discussion

Detection – Threat Model

Detection – Experiment Design

Detection – Features

Feature Group	Description	Count
New A RR Features	Counts of new RRs, IPs, Countries, and Autonomous System Owners ASN blocklist information	5
New NS RR Features	Counts of new RRs, nameservers, and nameserver registered domains NS for registered domain or subdomain	5
New MX RR features	Counts of new RRs, mail servers, and mail server registered domains Preference information	4
Previously seen RRs	Number of A or NS records seen previously Number of Autonomous System owners in previously seen A records Number of nameserver registered domains in previously seen NS records	4
General Features	New RRs (other than A, NS, MX, or CNAME), new rrnames	2

Detection – Dataset

- Dataset: PDNS records collected for hijacked domains and for domain similar to those commonly targeted in domain hijackings
 - > Alexa Top
 - Region-specific Alexa Popular
 - Alexa Business

Domain Group	Number of Domains	PDNS Records (million)
Hijacked Domains	86	13.6
Alexa Top	96	556.4
Region-specific Top	361	42.8
Alexa Business	359	44.3

Detection – Results

	Years in Dataset	Precision	Recall	FPR
Random Forest	2010-2013	0.85	0.73	0.02%
	2013-2016	0.85	0.65	0.02%
	2016-2020	0.8	0.57	0.04%
SVM	2010-2013	0.88	0.93	0.02%
	2013-2016	0.72	0.76	0.05%
	2016-2020	0.70	0.4	0.08%

Outline

- Background and Motivation
- Measurements
- Detection
- Discussion

Limitations and Future Direction

- Understanding the ability to detect attacks in real time would require testing in a live environment
 - Leveraging real DNS traces collected from security products deployed in global enterprise networks
- Attackers could evade the proposed approach by using DNS or hosting providers shared with their target

Summary and Conclusion

- A preliminary effort to investigating the characterization of domain hijacking and explore the potential detection/monitoring
- Domain hijacking attacks manifest themselves in various changes to hijacked domains' DNS records. These changes may be detected and leveraged to detect the attack.
- Changes to NS records are key indicator of domain hijacking attacks. Developing more sophisticated features related to these changes is a promising area of future research.

A Measurement-based Investigation of DNS Hijacking

Shuai Hao, Old Dominion University

<u>shao@odu.edu</u> <u>https://shhaos.github.io</u>

Based on the Study

Rebekah Houser, Shuai Hao, Zhou Li, Daiping Liu, Chase Cotton, and Haining Wang. *A Comprehensive Measurement-based Investigation of DNS Hijacking*, *International Symposium on Reliable Distributed System* (*SRDS*), Sep. 2021.

