

Advertising DNS Protocol Use to Mitigate DDoS Attacks

ΒY

1

Jacob Davis and Casey Deccio

OARC 36 Nov 29, 2021

Unless otherwise noted, images by Freepik from flaticon.com

DENERGY NAS

Sandia National Laboratories is a multimission Laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE+NA0003525.

² Domain Name System (DNS) Overview

- Resolves domain names \leftrightarrow IP addresses
 - Forward and reverse DNS Zone
- 2 client-server pairs
 - \circ Stub resolver \leftrightarrow recursive resolver
 - Recursive resolver \leftrightarrow authoritative server
- Typically runs over UDP (original standard)

Cache Poisoning:

Redirect victim to malicious site

4 Existing DNS Security Protocols

- DNS over TCP and DNS Cookies provide identity management
- DNS over TLS/HTTPS provides encryption
- DNSSEC provides signatures for DNS answers

• None of these prevent a DoS attack

- If DNS server X receives a UDP query, it will respond to the "source"
 - No knowledge of the victim's preferred protocol
 - Must support the least secure option (UDP) which allows reflection

DNS Protocol Advertisement Records (DPAR)

B Protocol Overview

Goal: protect clients using secure protocols (Cookies, TCP, etc.) from reflection-based DDoS attacks

- Clients create an "advertisement" record in reverse DNS for the protocol used
 Applies to entire subnet
- When receiving a query, server checks advertisement record and enforces it
 - E.g., querying IP has record stating they use cookies. If no cookie included, drop packet

7 Client/Record Specification

dns_proto_adv={udp|cookie|tcp|none}[delegate=(64-char-hex-field)]

- Currently 4 protocol options
 - udp acts as default, no record is equivalent
 - none signifies that the subnet has no DNS clients, drop all packets
 - Can be expanded in future
- Record placed at /16 and optionally delegated to /24
 - Delegation uses a hex string, index into /24's position
 If set, delegated to separate record, otherwise use /16 policy
- Similar pattern for IPv6: /40 and /48

h

Server/Enforcement Specification

- For each incoming IP, check for advertisement records in cache
 - If record found, continue
 - Otherwise, queue DNS query
 - If no record found by query, add negative cache entry, use default policy
- Does incoming query conform to policy?
 - Yes: respond
 - No: drop packet (respond occasionally if cookie policy)
- Requires authoritative servers to perform queries

Considerations & Evaluation

Shortcomings of Alternative Designs

- Allowing records at any subnet increases effort for server
- Having server infer client protocol could be abused by attacker
 Attacker could send spoofed queries to change server's expectation
- Having clients advertise support in their query does not protect them
 - Many servers in an attack will have never communicated with client
 - Need to be able to independently find advertisement policy

Administrative Feasibility

- Are the limitations for record locations manageable?
- Organizations announce Autonomous System (AS) prefixes for ranges of IPs
- An average /16 had 8.4 prefixes announced inside the subnet
 - In other words, a /16 is typically shared by 8 organizations
 - 74% of IPv6 /40s have only one AS prefix announcement
- Most prefixes are near in size to our record locations
 - Many ASes would require at most 4 records
 - 10% of IPv6 ASes would require 256+ records

Fig. 5. Distribution of announced IPv4 and IPv6 prefix lengths.

Estimated Record Landscape – Base Subnets

- Analyzed all queries to 9 root servers for 2 days in 2020
- 42% of **/16s** and nearly all **/40s** have no querying IP and can adopt a **none** policy
 - 47% of remaining **/16**s have a "dominant" policy of **none**
- 57 (IPv4) and 3.4 (IPv6) average delegations
- Would need less than 2.3 million records for all IPs

G 3

13 Estimated Record Landscape –Delegated Subnets

- 83% of **/24**s should use **none** (almost all **/48**s are **none**)
- 35% and 59% have single client
- Only 10% of /24s and 6% of /48s don't have a "favorite"

IABLE I
ANALYSIS OF IP ADDRESS PROTOCOL USE WITHIN DELEGATED SUBNETS
(/24s for IPv4 and /48s for IPv6). Percentages reflect the
BOLD HEADING ABOVE. "FAVORED" PROTOCOLS ARE THOSE USED BY
MOST CLIENTS.

TABLEI

	IPv4		IPv6	
	Count	%	Count	%
Total Subnets	2^{24}	100%	2^{48}	100%
No Clients	13,910,051	83%	2.8e14	100%
Some Clients	2,867,165	17%	195,036	0.0%
One Client	1,004,614	35%	114,303	59%
Multiple Clients	1,862,551	65%	80,733	41%
All UDP	1,543,122	83%	67,065	83%
All Cookie	9,564	0.5%	3,602	4.5%
All TCP	3,659	0.2%	0	0%
Mixed	306,206	16%	10,066	12%
Favor UDP	241,031	79%	5,853	58%
Favor Cookies	11,674	3.8%	1,535	15%
Favor TCP ¹	1,531	0.5%	0	0%
No Favor ²	51,970	17%	2,678	27%

Effectiveness for Server Adoption

- High rate of adoption required for success
- 3.7% of authoritative servers produce largest amplification 20-40
 - $\circ\,$ Targeting these could reduce overall amplification from 40x to 6x
 - Any recursive resolver could be used with these domains
- Support by major software could lead to adoption
 - If 30% of servers performed enforcement, attack volume would be reduced on average
 - Significant effort to determine if server is using enforcement

Incentives and Costs for Servers

- Servers do not substantially benefit
 - In a distributed attack, an individual server receives little traffic
- Servers are now required to perform extra work
 - Authoritative servers must perform queries and may not have a client component
- Analysis of BYU's authoritative server data shows queries from 15k IPs per day
- To get all records for these IPs, 1,000-5,000 queries are needed • BYU's recursive resolver performs 8.6 million queries in 12 hours

¹⁶ Potential Attack Vectors

- Attacker is off-path. Goal is to DDoS victim using DNS reflection
 - Advertisement records (and a strong protocol) prevent this
- Spoofing advertisement records to "upgrade" victim
 - Servers query for record independently
 - Attacker could use cache poisoning, but can be mitigated
- Flooding servers to force advertisement look ups
 - Mitigations for existing DDoS attacks apply
 - Additional burden is proportional to delay in performing lookups

Discussion

Limitations and Future Work

- Many parameters left undefined
 - Cache TTL, how long server can wait before querying record, IPv6 subnets, etc.
- Limited access to server data (only BYU)
 - Unclear how protocol applies to smaller/larger servers
- Further testing to determine parameters
 - More server datasets
 - Sample implementation

G

19 Conclusion

- DNS is vulnerable to identity management attacks
- Existing protocols (Cookies, DoH, etc.) provide solution but can't be enforced
- "DNS Protocol Advertisement Records" allow subnets to state protocol used
- Servers can check record and enforce protocol used
- Prevents reflection-based DDoS attacks
- Highly useable for clients
- Somewhat high costs for servers compared to benefits

Questions?

jacdavi@sandia.gov casey@byu.edu

