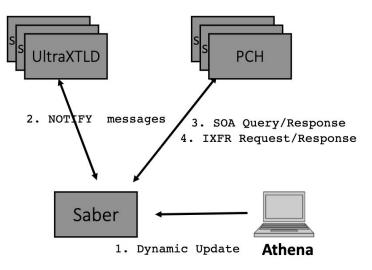
A DNS Anomaly Detection Model to Identify Unusual Lagging in Zone Updates

Speaker: Kundana Pillari, UC Irvine and Salesforce Collaborators: Allison Mankin and Baula Xu, Salesforce

Background

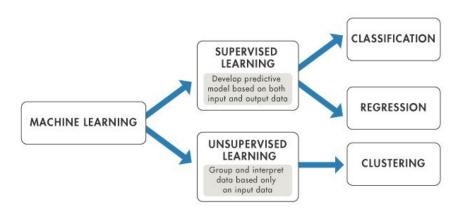

- In large-scale DNS deployments, zone updates are made by DNS hosting services on short timescales to large numbers of servers.
- Normal for the updates to be somewhat asynchronous from each other (DNS is "eventually consistent" by design)
- For our organization, customer sensitivity to stale information is high
- Take action by asking the hosting services to check for server problems when there are anomalous lags

Question: Which lags are anomalous? What threshold of difference in the SOA serial numbers indicates a problem?

Approach: Use an unsupervised machine learning algorithm to identify the anomalous points in monitor logs to help with this question of what is actionable.

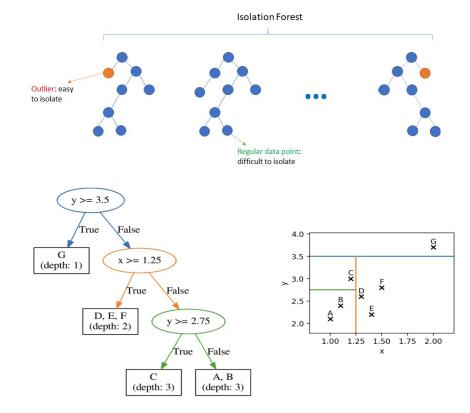
Scope of Anomaly Detection in DNS

- Hidden internal server is Saber
 - Updates external servers
- External servers:
 - UltraDNS
 - PCH
- The scope of work is to find update latency anomalies in external servers


Exploring Anomaly Detection Models

- Explored multiple platforms and algorithms
 - TensorFlow (Autoencoders)

KNN, SVM,

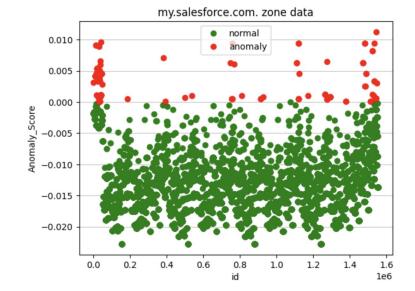

PCA, Iforest...

- Pytorch (LSTM)
- PyCaret
- PyCaret open-source python machine learning library
 - Unsupervised learning
- Used Isolation Forest machine learning algorithm
 - Less memory
 - Faster in performance

Isolation Forest machine learning algorithm

- Identifies anomalies by isolating outliers in the data
- Works on the principle of the decision tree algorithm
- Randomly selecting a feature from the given set of features
- Forms decision trees using combination for these features
- Outliers will be closer to the root node

Model Training


- May and June monitor logs
- Multiple anycast locations for three production zones: my.salesforce.com, salesforce.com, and force.com
- SOA (state of authority) records
- These logs provide timestamp (probe_time) and each server represented by serial numbers that indicates the zone version
- Fine-tuned with a supervised_target (probe_time) to control the learning process

	id	probe_time	zone	type	status	details
0	40	2021-06-01 00:00:03.919788	my.salesforce.com.	SOA	0	{"UDNS1":"2128885586"\t"UDNS3":"2128885586"\t"
1	93	2021-06-01 00:02:01.401629	my.salesforce.com.	SOA	0	{"UDNS1":"2128885640"\t"UDNS3":"2128885640"\t"
2	166	2021-06-01 00:04:01.384063	my.salesforce.com.	SOA	0	{"UDNS1":"2128885695"\t"UDNS3":"2128885695"\t"
3	235	2021-06-01 00:06:01.300033	my.salesforce.com.	SOA	0	{"UDNS1":"2128885745"\t"UDNS3":"2128885745"\t"
4	312	2021-06-01 00:08:01.877665	my.salesforce.com.	SOA	0	{"UDNS1":"2128885806"\t"UDNS3":"2128885806"\t"

Sample Input:

Results and Analysis

- Each data point is marked as normal or anomaly
- Analyze Serial Numbers (Zone versions)
- Finding the average differences between normal and anomalous data points
- Finding average differences between normal data points
- Learning trends and patterns in zone updates
- Thresholds for the zones
 - Improve the monitoring system

my.salesforce.com.: 1570.9815442561203 salesforce.com.: 62.941269841269836 force.com.: 569.0604288499026

my.salesforce.com.: 115.96783645507104 salesforce.com.: 0.2705122010774978

force.com.: 9.802812446759296

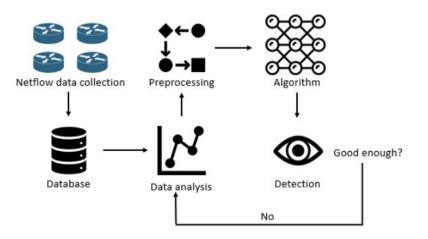
Results and Analysis

- Provide good numeric thresholds for how much lag was normal and how much anomalous.
- Previously, thresholds were guesstimates made by the team and were the same for all three zones
- Thresholds mark where anomalous behaviors begin
- Thresholds were extremely different for the three zones
- Lagging depended on zone sizes and how frequently the zones were updated

my.salesforce.com.: 1570.9815442561203 salesforce.com.: 62.941269841269836 force.com.: 569.0604288499026

my.salesforce.com.: 115.96783645507104 salesforce.com.: 0.2705122010774978 force.com.: 9.802812446759296

Next Steps


- Dynamic testing
 - Python script
 - Logs to preserve previous thresholds
- Sending alerts for highest anomalous data points
 - Email
 - PagerDuty

Refocus Dashboard:

	salesforce_com												
	PCH1	PCH2	Saber	Saber1B	Saber2A	UDNS1	UDNS2	UDNS3	UDNS4	zone_OK_Percent			
SOA	5753	5753	5753	5753	5753	5753	5753	5753	5753	100			
ТСР	57	136	136	144		44	13	119	16	100			
UDP	54	29	60	69		22		60		100			
siteforce_com													
	PCH1	PCH2	Saber	Saber1B	Saber2A	UDNS1	UDNS2	UDNS3	UDNS4	zone_OK_Percent			
SOA	0801	0801	0801	0801	0801	0801	0801	0801	0801	100			
TCP	42	42	133	136		43	15	123	19	100			
UDP	54	21	74	71	2	22	8	59	10	100			

Applications of ML in DNS

- ML has been used on DNS data frequently, especially focusing on DNS attacks and security.
 - Anomaly detection in DDOS mitigation
- However, this work covers an area in DNS availability
- ML models, both unsupervised and supervised, can be valuable to many other areas where DNS operators have data in realtime in future.

Thank You