DoQ on authoritative perspective, initial implementation, performance, DoS resilience

Libor Peltan • libor.peltan@nic.cz • 2022-07-30
Zone transfers over QUIC

- AXFR+IXFR over QUIC (XoQ)
 - Relatively trusted counterpart
 - Avoid DoS from outside
 - Certificates easily established
 - Slightly better than XoT
 - # of pkts, latency
 - Enables intermingled XFR query/responses
DoS attacks against DNS over UDP

- **Flood attack** (optional: spoofed source IP)
 - Optimize DNS answering
 - Optimize networking (XDP)
 - Handle 10^7 qps
DoS attacks against DNS over TCP

- SYN attack
 - SYN cookies (firewall)
- Slowloris &Co.
 - Custom TCP stack, connection table
 - Helps against SYN attack too
- XDP etc.
- Handle 10^6 connections
DoS-resistant DoQ server

- Same attacks as TCP \Rightarrow same approach
- Knot DNS + libngtcp2
- Custom connection tables
- XDP
DoS-resistant DoQ server

- 10^4 connections per sec 😞
- CPU usage by crypto
- Memory consumption in magnitude 10 GiB 😟
DoS attacks against DNS over QUIC

- „SYN“ attack – flood with unencrypted Initial
 - Retry packet
 - Ensures source IP not spoofed
 - Adds 1 RTT to legitimate connections
 - Not sure if helps

- Slowloris & Co.
 - Have more CPU than attacker
DoQ Full Handshake

Resolver

Initial

Handshake TICKET

DNS Query

Authoritative

DNS Answer
DoQ Quick Handshake

Resolver

DNS Query
TICKET

Handshake

DNS Answer

Handshake
TICKET

Authoritative
DoQ Quick Handshake

- Lower latency (immediate DNS)
- Not fewer packets
- Resolver remembers token
- Authoritative „stateless“
DoQ Server Certificate

- Researched by IETF DPRIVE group
- So far: negative
 - Server to use self-signed cert
 - Encryption established
 - Vulnerable to active MitM
Libngtcp2

- Handling single QUIC connection
- Congestion control
- No connections management
- No events scheduling
- Needs glue to interoperate with OpenSSL/GnuTLS
 - Improved recently
Knot DNS DoQ architecture

- Libngtcp2 + GnuTLS
- Connection tables/management
 - Similar to TCP-on-XDP
- XDP
 - Soon: conventional (in-kernel) UDP as well
Try it out!

- **Build Knot DNS from git master**

  ```
  xdp:
  
  listen: enp0s8     # XDP interface
  quic: on           # QUIC port 853
  quic-log: on       # lots of debug logs
  ```

- **Kdig supports DoQ** (also useful to query resolvers)

  ```
  $ kdig @203.0.113.5 example.com. +quic
  ```
Measure it!

- Use Knot DNS kxdpgun utility

```
# kxdpgun 203.0.113.5 \ 
--port 853 \ 
-i /example/queries.txt \ 
--duration 10 \ 
--qps 1000 \ 
--quic
```

- Normal legitimate traffic
 - --quic
- Always full handshake
 - --quic=0
- „SYN“ attack
 - --quic=1
- Slowloris
 - --quic=5
ADoQ Wrap-up

- Encryption & low-latency
- Performance good for ALL legitimate traffic
 - May displace UDP, TCP, etc.
- XDP benefits negligible
- DoS vulnerable FIXME
- Other quirks FIXME

libor.peltan@nic.cz

Thank you!