
DNS-over-QUIC
More than a year with DoQ

Andrey Meshkov
CTO and Co-Founder of AdGuard
am@adguard.com
@ay_meshkov

mailto:am@adguard.com


DNS-based products by AdGuard

● AdGuard DNS — public DNS resolver
● AdGuard Home — DNS server for personal use with 

content blocking capabilities
● AdGuard apps provide DNS filtering and encryption 

capabilities (DoH/DoT/DNSCrypt)
● We added DoQ to each of them:

https://adguard.com/en/blog/dns-over-quic.html

Intro

https://adguard.com/en/blog/dns-over-quic.html


AdGuard DNS
● Public DNS resolver with the focus on content blocking
● The first beta was launched in the end of 2016
● Officially released in December, 2018
● Open-source

https://github.com/AdguardTeam/AdGuardDNS
● Most of the clients are mobile devices

https://github.com/AdguardTeam/AdGuardDNS


Avg 1M+ RPS

● DNS: 14%
● DoT: 70%
● DoH: 15%
● DoQ: 1%

AdGuard DNS



What is QUIC? Basically, this is reinventing TCP over UDP, 
but with some cool stuff built-in.

● Built-in encryption (TLS v1.3)
● Faster handshake compared to TCP+TLS
● Multiplexing (+solving head-of-line blocking)
● Connection migration

QUIC



Faster Handshake

Images from https://blog.cloudflare.com/the-road-to-quic/



Head-Of-Line Blocking

HTTP/2 head-of-line blocking: a single TCP 
packet loss will, all queries/responses have to 
wait

QUIC - every DNS query/response is a new 
QUIC stream



● Endpoints can use “Connection ID” to track connections
● This makes it possible to continue using the same connection when network 

change occur (i.e. Wi-Fi <-> Cellular)

Connection Migration

QUIC packet header



DoQ vs Plain DNS
● Encryption
● No limit on DNS messages size
● Built-in protection against amplification



DoQ vs DNS-over-HTTP/3
● Both DoQ and DoH3 use QUIC as an 

underlying transport
● HTTP/3 adds HTTP on top of it
● HTTP adds almost zero value
● It adds more data-points that can be used 

for fingerprinting clients

Examples:
○ HTTP headers order
○ TLS properties
○ ETag tracking

HTTP

QUIC

UDP

QUIC

UDP

DoH3 stack DoQ stack



● DoQ connections are more “stable” than DoH/DoT
● DoQ is heavier on CPU than DoT, same as DoH
● DoQ is a good fit for mobile thanks to faster handshake

Our experience with DoQ



Performance
QUIC connections seem to be more “stable” than DoT and DoH.

Metric: DNS queries / TLS handshakes

● DoT: ~9 queries per connection
● DoH: ~14 queries per connection
● DoQ: ~30 queries per connection

Handshake is the heaviest and slowest part so, generally, fewer 
handshakes means better performance.



Metric: Time spent on AdGuard DNS filtering / Time spent in the 
protocol-specific code

1. Processing of a single DNS query involves cryptoprotocol-related 
code AND internal logic of AdGuard DNS (working with DNS 
messages, DNS cache, content blocking, etc).

2. On a flame graph we can see how much time was spent in each 
part of the code.

CPU usage



CPU usage - DoT

DoT processing flame graph from AdGuard DNS.
Purple - code, that’s related to TLS.



CPU usage - DoH

DoH processing flame graph from AdGuard DNS.
Purple - code, that’s related to HTTPS.



CPU usage - DoQ

DoQ processing flame graph from AdGuard DNS.
Purple - code, that’s related to quic-go.



CPU usage
QUIC is heavier on CPU than DoT. Same as DoH.

Metric: Time spent on AdGuard DNS filtering / Time spent in the 
protocol-specific code

● DoT: ~40% of the time was spent in TLS-related code
● DoH: ~60% of the time was spent in HTTP-related code
● DoQ: ~60% of the time was spent in QUIC-related code

Note, that it does not mean with DoQ a single query is slower! It just requires 
more CPU time overall (on async operations), but processing of a single 
query is very fast.



TLS Session Resumptions

TLS session resumptions (DNS-over-TLS) TLS session resumptions (DNS-over-HTTPS)



TLS Session Resumptions (DoQ)
Overall, the share of 
resumed sessions is 
very small for DoQ.

We are yet to figure out 
what’s the problem 
here.



Mildly interesting insights
● Request sizes are pretty much the same for all protocols
● Response sizes distribution for DoQ is similar to DoH
● DoQ and DoH clients prefer IPv4 not as often as DoT clients
● Invalid DNS messages
● TLS versions



Response sizes

Plain DNS over UDP



Response sizes

Plain DNS over TCP



Response sizes

DNS-over-TLS



Response sizes

DNS-over-HTTPS



Response sizes

DNS-over-QUIC



IPv4 vs IPv6

DNS-over-HTTPS



IPv4 vs IPv6

DNS-over-QUIC



IPv4 vs IPv6

DNS-over-TLS



TLS versions

DNS-over-TLS DNS-over-HTTPS DNS-over-QUIC



Invalid DNS queries

Queries, that we cannot parse



● CoreDNS fork (deprecated, we don’t use it anymore):
https://github.com/AdguardTeam/coredns

DoQ Server-Side Implementations

Sample CoreDNS configuration

https://github.com/AdguardTeam/coredns


● AdGuard DNS: coming soon
● We’re going to open the code under AGPL in the following weeks.
● The part of the code that implements pure DNS server (with DoQ 

support) will be then moved to a separate library with a permissive 
license.

DoQ Server-Side Implementations



● dnsproxy:
https://github.com/AdguardTeam/dnsproxy

DoQ Server-Side Implementations

Running dnsproxy as a DoQ server 
forwarding queries to 8.8.8.8

https://github.com/AdguardTeam/dnsproxy


● AdGuard Home:
https://github.com/AdguardTeam/AdGuardHome

DoQ Server-Side Implementations

https://github.com/AdguardTeam/AdGuardHome


● dnsproxy (written in Golang, can be used as a library):
https://github.com/AdguardTeam/dnsproxy

● AdGuard Home (written in Golang, uses dnsproxy internally):
https://github.com/AdguardTeam/AdGuardHome

● DnsLibs (library, written in C++):
https://github.com/AdguardTeam/DnsLibs

● dnslookup (simple nslookup-like util, supports DoQ/DoH/DoT/DNSCrypt):
https://github.com/ameshkov/dnslookup

DoQ Client-Side Implementations

https://github.com/AdguardTeam/dnsproxy
https://github.com/AdguardTeam/AdGuardHome
https://github.com/AdguardTeam/DnsLibs
https://github.com/ameshkov/dnslookup


● Golang: quic-go
https://github.com/lucas-clemente/quic-go

● C++: ngtcp2
https://github.com/ngtcp2/ngtcp2

● Rust: quiche
https://github.com/cloudflare/quiche

QUIC Implementations

https://github.com/lucas-clemente/quic-go
https://github.com/ngtcp2/ngtcp2
https://github.com/cloudflare/quiche


Thank you!
Questions?

Andrey Meshkov
am@adguard.com

@ay_meshkov

mailto:am@adguard.com

