DNS-over-QUIC

More than a year with DoQ

Andrey Meshkov

CTO and Co-Founder of AdGuard
am@adguard.com
@ay_meshkov

mailto:am@adguard.com

Intro

DNS-based products by AdGuard

e AdGuard DNS — public DNS resolver

e AdGuard Home — DNS server for personal use with
content blocking capabilities

e AdGuard apps provide DNS filtering and encryption
capabilities (DoH/DoT/DNSCrypt)

e We added DoQ to each of them:
https://adguard.com/en/blog/dns-over-quic.html

https://adguard.com/en/blog/dns-over-quic.html

AdGuard DNS

Public DNS resolver with the focus on content blocking
The first beta was launched in the end of 2016
Officially released in December, 2018

Open-source
https://github.com/AdguardTeam/AdGuardDNS

Most of the clients are mobile devices

https://github.com/AdguardTeam/AdGuardDNS

AdGuard DNS

Avg 1M+ RPS
e DNS: 14%
e DoT: 70%
e DoH: 15%
e DoQ: 1%

Plain DNS
14.0%

DNS-over-HTTPS
15.0%

DNS-over-QUIC

1.0%

DNS-over-TLS
70.0%

QUIC

What is QUIC? Basically, this is reinventing TCP over UDP,
but with some cool stuff built-in.

Built-in encryption (TLS v1.3)

Faster handshake compared to TCP+TLS
Multiplexing (+solving head-of-line blocking)
Connection migration

Faster Handshake

HTTP Request Over TCP + TLS HTTP Request Over QUIC
Client Server Client Server
= TCP SYN -= Tauie |
- \ l-.l...o.o.o - - l _l
= R | =m— — N e — | ==
TCP SYN + ACK —
“— —
TCP ACK QUIE
_— \) ——
TLS ClientHello HITPREQUESE. |
—
— HTTP Response
TLS ServerHello “—
«“—

\
TLS Finished

\
HTTP Request
~=

—_—
HTTP Response

Images from https://blog.cloudflare.com/the-road-to-quic/

Head-Of-Line Blocking

Server Client
Response 1
> X
Response 2
N
e
Response 3
N
=g
Response 1
N
>

retransmission

HTTP/2 head-of-line blocking: a single TCP
packet loss will, all queries/responses have to
wait

Lost

Queued

Queued

Processed

Server Client
Response 1
> X
Response 2
N
g
Response 3
N
g
Response 1
N
g

retransmission

QUIC - every DNS query/response is a new
QUIC stream

Lost

Processed

Processed

Processed

Connection Migration

Public Connection ID
Flags(8) (0, 8, 32 or 64)

QUIC Version (32) Packet Number
(optional) (8, 16, 32 or 48)

QUIC packet header

e Endpoints can use “Connection ID” to track connections
e This makes it possible to continue using the same connection when network
change occur (i.e. Wi-Fi <-> Cellular)

DoQ vs Plain DNS

e Encryption
e No limit on DNS messages size
e Built-in protection against amplification

DoQ vs DNS-over-HTTP/3

e Both DoQ and DoH3 use QUIC as an
underlying transport HTTP QuIC
e HTTP/3 adds HTTP on top of it
e HTTP adds almost zero value QuiC
e It adds more data-points that can be used
for fingerprinting clients UDP UDP
Examples: DoH3 stack DoQ stack

o HTTP headers order
o TLS properties
o ETag tracking

Our experience with DoQ

e DoQ connections are more “stable” than DoH/DoT
e DoQ is heavier on CPU than DoT, same as DoH
e DoQ is a good fit for mobile thanks to faster handshake

Performance

QUIC connections seem to be more “stable” than DoT and DoH.
Metric: DNS queries / TLS handshakes

e DoT: ~9 queries per connection
e DoH: ~14 queries per connection
e DoQ: ~30 queries per connection

Handshake is the heaviest and slowest part so, generally, fewer
handshakes means better performance.

CPU usage

Metric: Time spent on AdGuard DNS filtering / Time spent in the
protocol-specific code

1. Processing of a single DNS query involves cryptoprotocol-related
code AND internal logic of AdGuard DNS (working with DNS
messages, DNS cache, content blocking, etc).

2. On a flame graph we can see how much time was spent in each
part of the code.

CPU usage - DoT

DoT processing flame graph from AdGuard DNS.

Purple - code, that’s related to TLS.

DoH processing flame graph from AdGuard DNS.

Purple - code, that’s related to HTTPS.

CPU usage - DoH

CPU usage - DoQ

DoQ processing flame graph from AdGuard DNS.

Purple - code, that’s related to quic-go.

CPU usage

QUIC is heavier on CPU than DoT. Same as DoH.

Metric: Time spent on AdGuard DNS filtering / Time spent in the
protocol-specific code

e DoT: ~40% of the time was spent in TLS-related code
e DoH: ~60% of the time was spent in HTTP-related code
e DoQ: ~60% of the time was spent in QUIC-related code

Note, that it does not mean with DoQ a single query is slower! It just requires
more CPU time overall (on async operations), but processing of a single
query is very fast.

TLS Session Resumptions

Handshakes (new vs resumed)

14:25 14:30 14:35 14:40 14:45

TLS session resumptions (DNS-over-TLS)

14:50

- NEewW

== resumed

Handshakes (new vs resumed)

= NEW

== resumed

14:25 14:30 14:35 14:40 14:45 14:50

TLS session resumptions (DNS-over-HTTPS)

TLS Session Resumptions (DoQ)

Overa”’ the share of Handshakes (new vs resumed)
resumed sessions is

very small for DoQ. Q@ U= N = e

== resumed

We are yet to figure out
what's the problem
here.

14:25 14:30 14:35 14:40 14:45 14:50

Mildly interesting insights

Request sizes are pretty much the same for all protocols
Response sizes distribution for DoQ is similar to DoH

DoQ and DoH clients prefer IPv4 not as often as DoT clients
Invalid DNS messages

TLS versions

Response sizes

Response sizes

12:48 12:49 12:50 12:51 12:52 12:53 12:54 12:55 12:56 12:57 12:58 12:59 13:00 13:01 13:02

Plain DNS over UDP

Response sizes

Response sizes

12:49 12:50 12:51 12:52 12:53 12:54 12:55 12:56 12:57 12:58 12:59 13:00 13:01 13:02 13:03

Plain DNS over TCP

Response sizes

Response sizes

12:50 12:51 12:62 12:53 12:54 12:55 12:56 12:57 12:58 12:59 13:00 13:01 13:02 13:03 13:04

DNS-over-TLS

Response sizes

Response sizes

+Inf

4 KiB

1023 B

511 B

400 B

NN

100 B

12:49 12:50 12:51 12:52 12:53 12:54 12:55 12:56 12:57 12:58 12:59 13:00 EKHO 13:02 13:03

DNS-over-HTTPS

Response sizes

Response sizes

12:51 12:52 12:53 12:54 12:55 12:56 12:57 12:58 12:59 13:00 13:01 13:02 13:03 13:04 13:05

DNS-over-QUIC

IPv4 vs IPv6

Requests (by proto family)

17:30 17:32
== |[Pv4 == |PV6

DNS-over-HTTPS

IPv4 vs IPv6

Requests (by proto family)

/\/F’—/\///—\/—_/
e — e A e e E————

17:30 17:32
== |Pv4 == |Pv6

DNS-over-QUIC

IPv4 vs IPv6

Requests (by proto family)

17:30 17:32
== |[Pv4 == |Pv6

DNS-over-TLS

TLS versions

TLS versions

DNS-over-TLS

- tls1.2
- 1ls1.3

TLS versions

- Usl.2
- tls1.3

15:00

DNS-over-HTTPS

TLS versions

DNS-over-QUIC

- tls1.3

Invalid DNS queries

DNS Invalid messages

0.000600%
0.000500%
0.000400%
0.000300%
0.000200%

0.000100%

\ﬁ.
0% — —

14:14 14:16 14:18 14:20 14:22 14:24 14:26 14:28 14:30 14:32 14:34 14:36 14:38 14:40 14:42

== dns-tcp == dns-udp == doh == doq dot

Queries, that we cannot parse

DoQ Server-Side Implementations

e CoreDNS fork (deprecated, we don’t use it anymore):
https://qithub.com/AdguardTeam/coredns

@ . @
{
N

LauLe:

tls certs/example.crt certs/example.key
forward

Sample CoreDNS configuration

https://github.com/AdguardTeam/coredns

DoQ Server-Side Implementations

e AdGuard DNS: coming soon
We're going to open the code under AGPL in the following weeks.
The part of the code that implements pure DNS server (with DoQ

support) will be then moved to a separate library with a permissive
license.

DoQ Server-Side Implementations

e dnsproxy:
https://github.com/AdquardTeam/dnsproxy

./dnsproxy \
-1 001X
--quic-port=

--tls-crt=example.crt \
--tls-key=example.key \
=l 8.8.8.8:(53 \

-P

Running dnsproxy as a DoQ server
forwarding queries to 8.8.8.8

https://github.com/AdguardTeam/dnsproxy

DoQ Server-Side Implementations

e AdGuard Home:
https://github.com/Adgquard Team/AdGuardHome

DNS-over-QUIC port
853

If this port is configured, AdGuard Home will run a DNS-over-QUIC server on this port.

https://github.com/AdguardTeam/AdGuardHome

DoQ Client-Side Implementations

e dnsproxy (written in Golang, can be used as a library):
https://github.com/AdguardTeam/dnsproxy

e AdGuard Home (written in Golang, uses dnsproxy internally):
https://qithub.com/AdguardTeam/AdGuardHome

e DnsLibs (library, written in C++):
https://qithub.com/AdgquardTeam/DnsLibs

e dnslookup (simple nslookup-like util, supports DoQ/DoH/DoT/DNSCrypt):
https://github.com/ameshkov/dnslookup

https://github.com/AdguardTeam/dnsproxy
https://github.com/AdguardTeam/AdGuardHome
https://github.com/AdguardTeam/DnsLibs
https://github.com/ameshkov/dnslookup

QUIC Implementations

e Golang: quic-go
https://github.com/lucas-clemente/quic-go

e (C++: ngtcp2
https://github.com/ngtcp2/ngtcp2

e Rust: quiche

https://github.com/cloudflare/quiche

https://github.com/lucas-clemente/quic-go
https://github.com/ngtcp2/ngtcp2
https://github.com/cloudflare/quiche

Thank you!

Questions?

Andrey Meshkov

am@adguard.com
@ay_meshkov

mailto:am@adguard.com

