TLS at a Root Experiment

A USC/ISI and Google TLS Experiment

- Google has been experimenting with deploying authoritative DNS over TLS (DoT)
- Questions USC/ISI wanted to answer about deploying TLS at B:
 - How would enabling DoT affect our operational infrastructure?
 - What would the operational cost be?
 - Could we separate TLS from non-TLS during evaluation?
 - I.E. is there a viable path to safely deploying TLS?
- USC/ISI and Google jointly started a small TLS experiment

- Google's side:
 - syn-probe b.root-servers.net for TLS/853
 - When available, limit TLS traffic to a total of 40-50%
 - Important: our results are not 100% TLS
- USC/ISI's side:
 - Isolated one backend at SIN
 - Installed bind 9.18.2
 - Configured to matching our existing deployment but with TLS
 - Note: No additional TLS tuning performed
 - Routed all google IPs to that backend
- Experiment:
 - Week 1: measured traffic/cpu-load without TLS
 - Week 2: enable TLS and measure again

Isolation Architecture

- Firewall's role:
 - Isolate normal production from experiment traffic
 - Filter by port
 - (eg, 853)
 - Filter by address
 - (eg, google)
 - This report
- SIN traffic flow:
 - TLS backend: Address (e.g. google) or TLS traffic
 - Other backends: Normal UDP/TCP production traffic

Results

Measurement Results Overview

Measurements taken:

- Packets per second
- Bandwidth
- CPU load

In the following graphs we will see:

- A week long graph of each measurement
 - Measurement with TLS disabled
 - Measurement with TLS enabled
- A week long graph showing the multiplication factor
 - basically: $smooth_{1h}(\frac{NEW}{OLD-7d})$
 - (i.e., using a 1-hour smoothing window)

Packets Per Second Comparison

- Bottom line: a week of normal UDP/TCP RX/TX traffic (they overlap)
- Top 2 lines: a week of UDP/TLS experiment's RX/TX PPS

Packets Per Second Multiplier

Dividing TLS PPS by normal traffic loads: RX = 2.12x, TX = 1.54x

Wes Hardaker (team USC/ISI) with help from Puneet Sood (team Google)

TLS at a Root Experiment

Bandwidth Comparison

Bandwidth Multiplier

Multipliers: RX = 1.90x, TX = 1.60x

CPU Usage Comparison

CPU Usage Multiplier

Multipliers: CPU = 1.6x

Wes Hardaker (team USC/ISI) with help from Puneet Sood (team Google)

TLS at a Root Experiment 10/ 14

Summarizing the multiplication graphs:

Measurement	Multiplier
PPS RX	2.12
PPS TX	1.54
Bandwidth RX	1.90
Bandwidth TX	1.60
CPU Load	1.60

Reminder: Reminder: traffic simulates a 40-50% TLS

Summarizing the multiplication graphs:

Measurement	Multiplier
PPS RX	2.12
PPS TX	1.54
Bandwidth RX	1.90
Bandwidth TX	1.60
CPU Load	1.60

Reminder: Reminder: traffic simulates a 40-50% TLS

Take-away: operationally feasible, but with a \sim 1.5 - 2x cost for 50% load

Future considerations

Future deployment considerations TBD

- 1. Optimize performance
 - TCP tuning
 - TLS tuning (e.g. tunnel reuse parameters)
 - Larger load testing
- 2. Measure other parameters
 - e.g. open files, memory, etc
- 3. Compare results with other studies
- 4. Deploy safely to more sites
- 5. . . .
- 6. Profit

Will not be affected by TLS:

- load-time
- zone-size

Affected by TLS but easily measurable:

- traffic-volume (requires spec change for "tls-" prefix?)
- unique-sources

Requires internal name-server logging:

- traffic-sizes
- rcode-volume

- Currently all DITL collections record IP/QName/DNS-details in PCAP
- With TLS:
 - PCAPs alone would hide DNS query details
 - In-server capture/logging needed to retain full-DNS details
 - Both bind and knot (at least) support dnstap today
 - But not PCAP based output
- What would the OARC community expect/want?
 - We would need to ask them