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ØDomain Name System (DNS)

ØEntry point of many Internet activities

Ø Interpret domain names into network addresses (IPs)

ØE.g., translate uci.edu into 128.200.151.40

ØSecurity guarantee of multiple application services

ØDomain names are widely registered

Domain Name System
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ØRecursive/Iterative process

ØMultiple roles

ØForwarder, recursive resolver, authoritative server

DNS Resolution
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ØOver 100 RFCs

ØMany use cases
ØWeb browsing, email, zero-trust network, 

autonomous vehicle (!), etc.

ØMany implementations

Ø20+ widely used software

ØFragmented service ecosystem

ØMillions of nameservers, open resolvers, 

local resolvers, and forwarders [1]

DNS is complicated

[1] Mark Allman. Comments On DNS Robustness. IMC’18

DNS RFCs (as of 2020)

https://dl.acm.org/doi/abs/10.1145/3564625.3567968
https://datatracker.ietf.org/doc/html/draft-ietf-ipwave-vehicular-networking-03
https://emaillab.jp/dns/dns-rfc/
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DNS Failures & Attacks Happened a Lot
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Fuzzing in a Nutshell

$ ./testme --help
Usage: testme <int32_arg>

$ ./testme --help
Usage: testme <int32_arg>

$ cat fuzzer.sh
while :
do
  input="$(dd if=/dev/urandom bs=4 count=1)"
  ./testme $input || echo $input >> crash_seeds
done

Slides credit: Mathias Payer
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Fuzzing: Automated (Fuzz) Testing
ØCoverage-based greybox fuzzing, e.g., AFL

Slides credit: Mathias Payer

Run ProgramInput
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What are the challenges for ResolverFuzz?
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DNS Fuzzing: Challenge 1

Run ProgramInput

DNS Bugs:
+ Cache poisoning
+ Denial-of-service
+ Access violation

Not always crash!
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Which part is more vulnerable?
Where should we focus on?

Check vulnerabilities which have been identified
Focus on where they were most spotted
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ØManual analysis of 423 DNS CVEs from 1999-2023

Ø291 CVEs about 6 DNS software

Ø 245 CVEs about DNS resolvers

Ø 109 CVEs don’t trigger any crash!

Ø 93 crash CVEs are non-memory (e.g., assertion failures)

Comprehensive Study of CVEs
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DNS Fuzzing: Challenge 2

Run ProgramInput

DNS:
+ Stateful at resolver
+ Multi-party (client, resolver, name server)

Standard fuzzing:
+ Stateless (1 input per round)
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Stateless Fuzzing vs Stateful Resolver

Response without query

CVE-2021-25220:
+ Bogus NS response
+ Cache poisoning

Query without response

CVE-2022-3924:
+ Many recursive queries
+ Stale option enabled
+ Race condition & crash
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DNS Fuzzing: Challenge 3

Run ProgramInput

DNS Implementations
+ C, C++, C#, Go
+ Multilingual System

Code coverage
+ “No grand slam” metric [2]
+ Code coverage vs. stateful bugs?

[2] Wang et al. Be Sensitive and Collaborative:Analyzing Impact of Coverage Metrics in Greybox Fuzzing. RAID’19
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How should we design ResolverFuzz?

Black box, Stateful and Grammar-based fuzzing
Two input generators

Identify diff. vuln. by adapting diff. oracles
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ØInput:

ØQuery Generator

ØResponse Generator

ResolverFuzz Infrastructure
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ØOutput:

ØResponse

ØCache

ØSystem logs

ResolverFuzz Infrastructure
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ØOracle:

ØMeasure divergence

ØBug/vuln. analysis

ResolverFuzz Infrastructure
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ØTwo dimensions

ØClient-queries 

ØFor attacker clients

ØNameserver (NS)-responses 

ØFor attacker NSes

Input Generation
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ØGrammar-based Fuzzing

ØProbabilistic context-free 

grammar (PCFG)

ØQueries and Responses

ØHigh prob. for certain fields

ØGuide fuzzing process

Input Generation
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ØByte-level mutation

ØSome DNS implementations fail to correctly decode strings with 

special characters embedded

ØE.g., \., \000, @, /, and \

ØJeitner et al. [Security’21]

ØAddition, deletion, and replacement

ØAfter PCFG test generation

Input Generation
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ØInitialize DNS Resolvers

ØTest case generation

ØQuery & Responses

ØTest case execution

ØData dump

ØReset for next round

ØDifferential analysis

ResolverFuzz: Workflow
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ØSome DNS software are slow

ØE.g., BIND (~0.4s per query) v.s. PowerDNS (>1s per query)

ØEmpty cache for each test

ØPreset timeouts

ØPre- and post-processing

ØNS initialization

ØData collection

ØSolution: Run several test units in parallel

Ø“High efficiency via high throughput”

Efficiency
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ØDifferent DNS software

ØObjects of differential analysis

ØThree Oracles

ØCache poisoning oracle

ØResource consumption oracle

ØCrash & Corruption oracle

Oracle

DNS Software
cache records

Bisecting K-means
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How does ResolverFuzz perform?

Tested in 6 popular DNS software and 4 popular modes
Good coverage of different field values

Efficient runtime performance
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Ø6 DNS software

ØBIND 9, Unbound, PowerDNS, Knot, Technitium and MaraDNS

ØDocker-based

ØSchedulers and oracles implemented in Python

Evaluation
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Ø4 configurations:

ØRecur.-only, Fwd-only, CDNS w/ fallback and CDNS w/o fallback

Evaluation
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ØAnalysis of test generation

ØGood coverage of different field values

ØRule probabilities of PCFG

ØTest certain code logic more intensively

ØTest cases prone to trigger errors

ØPotentially bugs

ØOnly 17.8% have RCODE=NOERROR

Evaluation
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ØRuntime performance

ØUse concurrency to speed up

Ø5.9 QPS (CDNS w/ f.b.)

Ø BIND and Unbound only 

Ø2.8 QPS (other modes)

Ø MaraDNS, PowerDNS: low on efficiency

ØSimilar speed with real-world DNS

resolution

ØGoogle DNS: 300-400 ms per query

Ø i.e., 2.5-3.3 QPS

Evaluation
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How many new vuln. are discovered?

23 vulnerabilities identified
19 confirmed, 15 CVEs assigned

Categorized into 3 classes
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Discovered Vulnerabilities

MaginotDNS [Security’23] Phoenix Domain [NDSS’23, OARC 39] TuDoor [S&P’24, OARC’42]



Thanks for listening!
Any questions?
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