
ResolverFuzz: Automated Discovery of
DNS Resolver Vulnerabilities with

Query-Response Fuzzing
Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li and Zhou Li

Accepted by USENIX Security 2024

Charlotte, NC, USA
Feb 9, 2024

1

DNS-OARC 42

2

ØDomain Name System (DNS)

ØEntry point of many Internet activities

Ø Interpret domain names into network addresses (IPs)

ØE.g., translate uci.edu into 128.200.151.40

ØSecurity guarantee of multiple application services

ØDomain names are widely registered

Domain Name System

3

ØRecursive/Iterative process

ØMultiple roles

ØForwarder, recursive resolver, authoritative server

DNS Resolution

4

ØOver 100 RFCs

ØMany use cases
ØWeb browsing, email, zero-trust network,

autonomous vehicle (!), etc.

ØMany implementations

Ø20+ widely used software

ØFragmented service ecosystem

ØMillions of nameservers, open resolvers,

local resolvers, and forwarders [1]

DNS is complicated

[1] Mark Allman. Comments On DNS Robustness. IMC’18

DNS RFCs (as of 2020)

https://dl.acm.org/doi/abs/10.1145/3564625.3567968
https://datatracker.ietf.org/doc/html/draft-ietf-ipwave-vehicular-networking-03
https://emaillab.jp/dns/dns-rfc/

5

DNS Failures & Attacks Happened a Lot

6

7

Fuzzing in a Nutshell

$./testme --help
Usage: testme <int32_arg>

$./testme --help
Usage: testme <int32_arg>

$ cat fuzzer.sh
while :
do
 input="$(dd if=/dev/urandom bs=4 count=1)"
 ./testme $input || echo $input >> crash_seeds
done

Slides credit: Mathias Payer

8

Fuzzing: Automated (Fuzz) Testing
ØCoverage-based greybox fuzzing, e.g., AFL

Slides credit: Mathias Payer

Run ProgramInput

9

What are the challenges for ResolverFuzz?

10

DNS Fuzzing: Challenge 1

Run ProgramInput

DNS Bugs:
+ Cache poisoning
+ Denial-of-service
+ Access violation

Not always crash!

11

Which part is more vulnerable?
Where should we focus on?

Check vulnerabilities which have been identified
Focus on where they were most spotted

12

ØManual analysis of 423 DNS CVEs from 1999-2023

Ø291 CVEs about 6 DNS software

Ø 245 CVEs about DNS resolvers

Ø 109 CVEs don’t trigger any crash!

Ø 93 crash CVEs are non-memory (e.g., assertion failures)

Comprehensive Study of CVEs

13

DNS Fuzzing: Challenge 2

Run ProgramInput

DNS:
+ Stateful at resolver
+ Multi-party (client, resolver, name server)

Standard fuzzing:
+ Stateless (1 input per round)

14

Stateless Fuzzing vs Stateful Resolver

Response without query

CVE-2021-25220:
+ Bogus NS response
+ Cache poisoning

Query without response

CVE-2022-3924:
+ Many recursive queries
+ Stale option enabled
+ Race condition & crash

15

DNS Fuzzing: Challenge 3

Run ProgramInput

DNS Implementations
+ C, C++, C#, Go
+ Multilingual System

Code coverage
+ “No grand slam” metric [2]
+ Code coverage vs. stateful bugs?

[2] Wang et al. Be Sensitive and Collaborative:Analyzing Impact of Coverage Metrics in Greybox Fuzzing. RAID’19

16

How should we design ResolverFuzz?

Black box, Stateful and Grammar-based fuzzing
Two input generators

Identify diff. vuln. by adapting diff. oracles

17

ØInput:

ØQuery Generator

ØResponse Generator

ResolverFuzz Infrastructure

18

ØOutput:

ØResponse

ØCache

ØSystem logs

ResolverFuzz Infrastructure

19

ØOracle:

ØMeasure divergence

ØBug/vuln. analysis

ResolverFuzz Infrastructure

20

ØTwo dimensions

ØClient-queries

ØFor attacker clients

ØNameserver (NS)-responses

ØFor attacker NSes

Input Generation

21

ØGrammar-based Fuzzing

ØProbabilistic context-free

grammar (PCFG)

ØQueries and Responses

ØHigh prob. for certain fields

ØGuide fuzzing process

Input Generation

22

ØByte-level mutation

ØSome DNS implementations fail to correctly decode strings with

special characters embedded

ØE.g., \., \000, @, /, and \

ØJeitner et al. [Security’21]

ØAddition, deletion, and replacement

ØAfter PCFG test generation

Input Generation

23

ØInitialize DNS Resolvers

ØTest case generation

ØQuery & Responses

ØTest case execution

ØData dump

ØReset for next round

ØDifferential analysis

ResolverFuzz: Workflow

24

ØSome DNS software are slow

ØE.g., BIND (~0.4s per query) v.s. PowerDNS (>1s per query)

ØEmpty cache for each test

ØPreset timeouts

ØPre- and post-processing

ØNS initialization

ØData collection

ØSolution: Run several test units in parallel

Ø“High efficiency via high throughput”

Efficiency

25

ØDifferent DNS software

ØObjects of differential analysis

ØThree Oracles

ØCache poisoning oracle

ØResource consumption oracle

ØCrash & Corruption oracle

Oracle

DNS Software
cache records

Bisecting K-means

26

How does ResolverFuzz perform?

Tested in 6 popular DNS software and 4 popular modes
Good coverage of different field values

Efficient runtime performance

27

Ø6 DNS software

ØBIND 9, Unbound, PowerDNS, Knot, Technitium and MaraDNS

ØDocker-based

ØSchedulers and oracles implemented in Python

Evaluation

28

Ø4 configurations:

ØRecur.-only, Fwd-only, CDNS w/ fallback and CDNS w/o fallback

Evaluation

29

ØAnalysis of test generation

ØGood coverage of different field values

ØRule probabilities of PCFG

ØTest certain code logic more intensively

ØTest cases prone to trigger errors

ØPotentially bugs

ØOnly 17.8% have RCODE=NOERROR

Evaluation

30

ØRuntime performance

ØUse concurrency to speed up

Ø5.9 QPS (CDNS w/ f.b.)

Ø BIND and Unbound only

Ø2.8 QPS (other modes)

Ø MaraDNS, PowerDNS: low on efficiency

ØSimilar speed with real-world DNS

resolution

ØGoogle DNS: 300-400 ms per query

Ø i.e., 2.5-3.3 QPS

Evaluation

31

How many new vuln. are discovered?

23 vulnerabilities identified
19 confirmed, 15 CVEs assigned

Categorized into 3 classes

32

Discovered Vulnerabilities

MaginotDNS [Security’23] Phoenix Domain [NDSS’23, OARC 39] TuDoor [S&P’24, OARC’42]

Thanks for listening!
Any questions?

33

Qifan Zhang, Department of EECS, UC Irvine
qifan.zhang@uci.edu

