
@THU @OARC42

Presenter: Xiang Li
Tsinghua University

TuDoor Attack:
Systematically Exploring and Exploiting 
Logic Vulnerabilities in DNS Response

Pre-processing with Malformed Packets
[Published at IEEE S&P 2024]



@THU @OARC42

TuDoor

Attack Impact

2

Poisoning vulnerable resolvers’ 
cache within just one second.

Our TuDoor attack could poison
arbitrary domains, e.g., .com and .net.



@THU @OARC42

TuDoor

Domain Name System (DNS)

3

ØDNS Overview
q Translating domain names to IP addresses

q Entry point of many Internet activities

q Domain names are widely registered

example.com

93.184.216.34

DNS

Web CDN Email Certificate

Cited from verisign.com/dnib

https://www.verisign.com/en_US/domain-names/dnib/index.xhtml


@THU @OARC42

TuDoor

Domain Name System (DNS)

4

ØHierarchical Name Space
q Authoritative zones: root, TLD, SLD à DNS records

q Domain delegation à Domain registration

ØMultiple Resolver Roles
q Client, forwarder, recursive, authoritative

q Caching

Ø Iterative Resolution Process
q Client-server style

netcom

example

DNS
client

Forw-
arder

Recursive
resolver Authoritative 

servers

Root

TLD

SLD

.

DNS namespace

Delegate

Delegate

Query example.com

Referral to SLD NS

Query example.com

Referral to TLD NS

1 2

3

4

5

6

Query example.com

Authoritative answer

7

8

910

Query Query

Response



@THU @OARC42

TuDoor

netcom

example

Domain Name System (DNS)

5

ØDNS Resolution Process
q Primarily over UDP

q Iterative and recursive

q Caching

DNS
client

Forw-
arder

Recursive
resolver

Authoritative 
servers

Root

TLD

SLD

.

DNS namespace

Delegate

Delegate

Query example.com

Referral to SLD NS

Query example.com

Referral to TLD NS

1 2

3

4

5

6

Query example.com

Authoritative answer

7

8

910

Query Query

Response

example.com A?
(empty)
(empty)
(empty)

SP=50000

QD
AN

AU
AR

DP=53 TXID=1001

example.com A?
example.com A 1.1.1.1
(empty)
(empty)

SP=53

QD
AN

AU
AR

DP=50000 TXID=1001

Query

Response

Source port TXID

6 5 5 3 6 6 5 5 3 6

32 bits space



@THU @OARC42

TuDoor

Takeaway

6

Attackers have long been trying to manipulate its 
response for hijacking via cache poisoning attacks.

Since DNS is the cornerstone of the Internet,
enabling multiple critical services and applications,



@THU @OARC42

TuDoor

Question

7

Since DNS is primarily over UDP, attackers want to 
inject forged answers into resolvers’ cache.

What is DNS cache poisoning?



@THU @OARC42

TuDoor

DNS Cache Poisoning

8

ØTarget
q Injecting forged answers into resolvers’ cache

ØTaxonomy
q On-path, off-path

ØTechnique
q Cat-and-mouse game 1997

Kashpureff
Attack

2002

Birthday
Attack

2008

Kaminsky
Attack

2013

Fragmentation
Attack

2020

Attack on
Forwarders

SADDNS
Attack

2020
2021

Attack via
Escaped
Chars

SADDNS v2
Attack

2021

example.com

93.184.216.34

DNS

Web CDN Email Certificate

Hacked

2022

Attack via
Escaped
Chars v2

2023

MaginotDNS
Attack



@THU @OARC42

TuDoor

DNS Cache Poisoning (1/5)

9

ØKashpureff Attack (on-path, 1997)
q Method: returning forged responses from the authoritative

q Result: resolver accepting all records in the response

q Cause: lacking data verification (bailiwick rules)

Evil client

“alternic.net”
Authoritative

Server

ISP resolver

Unsuspecting
server

CacheStep1: Recursive query for
www.alternic.net/A

Step 2: Iterative query for
www.alternic.net/A

Step 3: Response including bogus
www.internic.net/NS RR

Step 4:
Recursive query for

www.internic.net/A

Step 5:
Bogus

Response



@THU @OARC42

TuDoor

DNS Bailiwick Rules

10

ØMitigating the Kashpureff Attack
q The credibility checking when storing cache entries

q Checking for “in bailiwick” in response data: answer records must be from the 
same domain as the requested name

$ dig example.com 

;; ANSWER SECTION:
example.com. 86400 IN A 93.184.216.34

;; AUTHORITY SECTION:
mybank.com. 86400 IN NS ns.mybank.com.

;; ADDITIONAL SECTION:
ns.mybank.com. 86400 IN A 1.2.3.4

In-bailiwick
Can be trusted

Out-of-bailiwick
Should be removed

Bailiwick



@THU @OARC42

TuDoor

Takeaway

11

DNS cache poisoning on recursives from the on-path 
seems impossible to conduct from 1997.

After the Kashpureff attack, bailiwick checking is 
integrated into the resolver’s implementation,



@THU @OARC42

TuDoor

DNS Cache Poisoning (2/5)

12

ØKaminsky Attack (Off-path, 2008)
q Method: injecting forged responses with the “birthday paradox”

q Result: resolver accepting glue records in the response

q Cause: lacking source port randomization (TXID only 16 bits)

Evil client

“mybank.com”
Authoritative

Server

ISP resolver

Unsuspecting
server

CacheStep 1: Recursive query for
www123.mybank.com/A

Step 2: TXID=1001: Iterative query for
www123.mybank.com/A

Step 4: Response

TX
Q

ID
=1

00
0

TX
ID

=1
00

1

TX
ID

=1
00

2

www123.mybank.com A?
(empty)
mybank.com NS ns.mybank.com
ns.mybank.com A 6.6.6.6

TXID=XXXX

QD
AN

AU
AR

Step 3: Response

www123.mybank.com A?
(empty)
mybank.com NS ns.mybank.com
ns.mybank.com A 1.1.1.1

TXID=1001

QD
AN

AU
AR

If TXID matching, 
success!

If TXID not matching, 
start the attack again 

with another 
www456.mybank.com



@THU @OARC42

TuDoor

DNS Source Port/TXID Randomization

13

ØMitigating the Kaminsky Attack
q Increasing the query guessing entropy

q 16-bit source port x 16-bit TXID = 32-bit space

q Hard to brute-force

Source port TXID

6 5 5 3 6 6 5 5 3 6



@THU @OARC42

TuDoor

Takeaway

14

DNS cache poisoning on resolvers from the off-path 
became difficult to conduct from 2008.

After the Kaminsky attack, source port randomization 
is integrated into the resolver’s implementation,



@THU @OARC42

TuDoor

DNS Cache Poisoning (3/5)

15

ØFragmentation-based Attack (Off-path, 2013)
q Method: injecting forged responses by exploiting the 2nd fragment without checking

q Result: resolver accepting records in the resembled response

q Cause: accepting small-sized packets & predictable IPID (16-bits)

Fragment 1:
Validation fields

Fragment 2:
No validation fields

Source port
TXID

IPID Need to guarantee 
IPID same for f1&f2



@THU @OARC42

TuDoor

DNS Cache Poisoning (3/5)

16

ØFragmentation-based Attack (Off-path, 2013)
q Method: injecting forged responses by exploiting the 2nd fragment without checking

q Result: resolver accepting records in the resembled response

q Cause: accepting small-sized packets & predictable IPID (16-bits)

Step 0: Spoofed 2nd fragment
(No UDP and DNS headers)

Attacker Recursive
resolver

Authoritative
server

2nd
Spoofed fragment cached

Step 1: DNS query
Step 2: DNS query

2nd
1stStep 3: Fragmented

response
1st
2nd Forced fragmentation

Defragmented with 
spoofed 2nd fragment

Rogue response cached
by recursive resolver

Fragment 1:
Validation fields

Fragment 2:
No validation fields

Need to guarantee 
IPID same for f1&f2



@THU @OARC42

TuDoor

IPID Randomization! Restricting Frag.?

17

ØMitigating the Fragmentation-based Attack
q IPID randomization

o The fragmentation-based Attack needs to guess the IPID

o Randomized IPID could prevent the 2nd fragment from being accepted

q Restricting fragmentation
o The root cause is fragmentation, no fragmentation or restricting it could be one mitigation

o For example, reducing the packet size, falling back to TCP, restricting the frag_number/timeout

q Other methods
o Adding new validation fields, such as applying 0x20 encoding to each RRs



@THU @OARC42

TuDoor

Takeaway

18

DNS cache poisoning exploiting fragmentation 
became difficult to conduct from 2013.

After the fragmentation-based attack, IPID 
randomization and fragmentation restriction 

are widely applied in the OS kernel,



@THU @OARC42

TuDoor

DNS Cache Poisoning (3/5)

19

ØFragmentation-based Attack on Forwarders (Off-path, 2020)
q From our NISL lab, published at USENIX Security 2020
q New method: although it is not easy to trigger fragmentation for a normal response, 

we can increase the packet size with our own controlled domain

Increasing the 
packet size with 

the CNAME chain



@THU @OARC42

TuDoor

DNS Cache Poisoning (4/5)

20

ØSADDNS Attack (Off-path, 2020)
q Method: inferring the source port using Linux kernel’s side-channel
q Result: guessing the source port in a short time, resolver accepting fake records

q Cause: Linux kernel’s global ICMP rate-limit leaking the port-use state

2. vctm.com A? sp=x, dp=53, id=y

www.saddns.net

0. Muting
Attacker Recursive

resolver
Authoritative

Server (vctm.com)

1. vctm.com A?

3. vctm.com A v.c.t.m
dp=0, 1, 2, …, x

4. Port Scan

id=0, 1, 2, …, y
5. vctm.com A a.t.k.r, sp=53, dp=x

Cached6. vctm.com A a.t.k.r

sp=source port
dp=dest port
v.c.t.m=legal IP
a.t.k.r=malicious IP

No counter
left

One counter
left

Found

http://www.saddns.net/


@THU @OARC42

TuDoor

Patching the Linux Kernel

21

ØMitigating the SADDNS Attack
q ICMP global rate-limit counter randomization

o Implemented by Linux kernel

q Reducing domain resolution timeout
o SADDNS needs a long timeout to infer the source port

o Prevent the authoritative server from being muted easily

q General methods
o 0x20, DNSSEC

git.kernel.org

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b38e7819cae946e2edf869e604af1e65a5d241c5


@THU @OARC42

TuDoor

Question

22

No. MaginotDNS breaks this guarantee with a new 
powerful cache poisoning vulnerability.

26 years later, does bailiwick checking work as 
desired after fixing the Kashpureff attack?



@THU @OARC42

TuDoor

DNS Cache Poisoning (5/5)

23

ØMaginotDNS Attack (On-/Off-path, 2023)
q From our NISL lab, published at USENIX Security 2023
q New attack surface: exploiting the bailiwick checking vulnerability to inject fake 

response into the forwarder’s cache shared with the recursive (victim)

⑥ Query all

.com domains
Qfu: Forward to upstream

Conditional DNS server (CDNS)

ZF: Forwarding 
DNS zones

Global DNS cache

Attacker DNS client

Query Q for domain dattack

Attacker’s 
server that 

provides data 
for dattack

Upstream
DNS server

Query

Qfd: Forward to attacker’s server

Forged response Rattack that matches Qfd or Qfu

Exploit bailiwick vulnerability

ZR: Recursive
DNS zones

Match

com. NS ns1.rogue-tld-ns.org

ns1.rogue-tld-ns.org
(Rogue authoritative 

server NSattack)

Ordinary DNS client

⑤ Query .com domains in ZR1

2

3

3

4

5

6

All future 
queries hijacked



@THU @OARC42

TuDoor

Patching the Resolver Implementation

24

ØMitigating the MaginotDNS Attack
q Aligning the bailiwick checking logic between fwders & recurs

o The logic implementation of forwarders is flawed

o Adding bailiwick checking for the forwarder

BIND Knot PowerDNS Unbound



@THU @OARC42

TuDoor

Real-world Impact

25

Ø Industry
q Presented at Black Hat USA 2023

ØGovernment/University
q An Austria government CERT daily report
q A Sweden government CERT weekly news
q A Bournemouth University (BU) CERT news

Ø 60+ News Coverage
q E.g., BleepingComputer

ØAPNIC Blog
Ø数字寰宇大家讲堂公开课

https://www.blackhat.com/us-23/briefings/schedule/index.html
https://www.govcert.gv.at/cert-tagesmeldungen.html?detail=entry-0
https://www.cert.se/2023/08/cert-se-s-veckobrev-v-33
https://cert.bournemouth.ac.uk/maginotdns-attacks-exploit-weak-checks-for-dns-cache-poisoning/
https://www.bleepingcomputer.com/news/security/maginotdns-attacks-exploit-weak-checks-for-dns-cache-poisoning/
https://cepoca.cn/lectureHall/lectureRoomDetail?liveUid=af4d1df145b9e4defcfcef8c7c624c85


@THU @OARC42

TuDoor

Question

26

We found that the DNS response processing logic 
has never been studied thoroughly.

Why is the new DNS cache poisoning attack still possible 
after researchers and vendors did lots of work?



@THU @OARC42

TuDoor

Takeaway

27

What we did in this paper. And we found,

It is necessary to provide a systematic 
analysis of the DNS response processing logic 

and expose all potential threats.



@THU @OARC42

TuDoor

History Not Over Yet

28

1997

Kashpureff
Attack

2002

Birthday
Attack

2008

Kaminsky
Attack

2013

Fragmentation
Attack

2020

Attack on
Forwarders

SADDNS
Attack

2020
2021

Attack via
Escaped
Chars

SADDNS v2
Attack

2021
2022

Attack via
Escaped
Chars v2

2023

MaginotDNS
Attack

2024

TuDoor
Attack (Fastest)



@THU @OARC42

TuDoor

TuDoor Attack

29

ØWhat is the TuDoor attack
q Proposed by our NISL lab, published at [IEEE S&P 2024]
q A new set of powerful DNS-related attacks

o DNS cache poisoning, DoS, and resource consuming

q Among them, TuDoor can poison vulnerable resolvers within 1s

ØName
q Exploiting vulnerabilities of DNS response processing logic

q A very covert response door à like 突门 in the Great Wall

q Called the TuDoor attack



@THU @OARC42

TuDoor

Attack Overview of TuDoor

30

ØAttack Target
q Resolvers, including stub resolver, DNS forwarders, and recursive resolvers

ØThreat Model
q Identifying the target resolver

q Triggering different vulnerabilities

q Conducting the attack

DNS
Forwarder

Stub
Resolver

Recursive
Resolver

Authoritative
Nameserver

Application Response Response

Query

Response

…
…

Cache Cache Cache

Attacker

Injecting malformed packets 
earlier than legal responses 

(from off-/on-path)

Initiating
DNS queries

Normal Resolution

Attack Procedure

Triggering vulnerabilities

Query Query

Three Target Resolvers



@THU @OARC42

TuDoor

Analysis of DNS Response Processing

31

ØSystematic Analysis
q 28 DNS software à Constructing processing states

o 8 recursive resolvers, 10 DNS forwarders, 6 stub resolvers, 4 DNS programming libraries

TXID
MatchingReceiving

Responses 1

Unmatched
Four-tuple

2

IP
Packet

IP
Packet

Other Responses (ICMP)

3

UDP/TCP
Packet

4

DNS
Payload

5

DNS
Header

QR=0 (Query) or Other DNS Header Errors

6

QD
Section

QD Section Format Error

7 8 9

AN/NS/AR
Section

Parsed
Data Processing

Parsed Data

AN/NS/AR Section Format Error

131210Receiving
Closed

Terminating
Resolution

11 Reaching
Query Limit

Not Reaching
Query Limit

Sending
Queries

0

Receiving
Timeout

Checking
UDP/TCP Layer

Null UDP/TCP Payload

UDP/TCP Payload < 12B

Unmatched TXID

Checking
Four-tuple

Processing
ICMP Packet

Checking
DNS Layer

Checking
DNS Header

Parsing
QD Section

Parsing AN,
NS, AR Section

Checking
TXID

Checking
Query Limit

Green Arrows:
Safe State Transitions

Red Arrows: 
Vul. State Transitions

Dark Arrows:
Normal Operations

Blue Marks: 
Crucial States 



@THU @OARC42

TuDoor

Vulnerable State Transitions

32

ØDNS Response Pre-processing Implementations
q Part software

q Red lines
o Vulnerable



@THU @OARC42

TuDoor

Vulnerable Software & Public Resolvers

33

Ø 24/28 Software
q Vulnerable

Ø 18/42 Public Resolver
q Vulnerable

ØCache poisoning
ØDoS
ØResource consuming



@THU @OARC42

TuDoor

Attack Steps of TuDoor

34

ØThree Attacks
q Cache Poisoning

q DoS

q Resource Consuming

ØAttack steps
q Example: cache poisoning

q One new side-channel vulnerability

q Exposing the source port
q Attackers just need to send <65,535 pkts

q Attack time: avg. 425ms

Guessing TXID
(!"#$!" - !"#$!#)

Probing source port
(%&'(!" -%&'(!#)

(!"!)

#!: vitm.com A $%&'"?
<&(" , ()*+"> à <&(# , 53> 

Target
Recursive Resolver (!"$)

1

(!"%)

#$& : vitm.com A ./!0$& ?
<&(# , "123$&> à <&(' , 53> 2

NS of vitm.com/atkr.com
is cached

4(&: vitm.com A ./!0$&
<&(# , "123$&> ß <&(), 53> 7

<&(' , 53> à <&(# , "123$*> 

vitm.
com

Authoritative
Nameserver (!"()

<&(' , 53> à <&(# , "123$+> 

…

#$,: "123$&.atkr.com A $%&'#-?
<&(# , ()*+#-> à <&(), 53> 4

!"#$!$
Sending source port "123$& 5

<&(' , 53> à <&(# , "123$&> 

<&(' , 53> à <&(# , "123$&> 

…

%&'(!$

4$: vitm.com A $%&'"
<&(" , ()*+"> ß <&(# , 53> 8

!"#$!$

Attack
started



@THU @OARC42

TuDoor

Vulnerable Open Resolvers

35

Ø Internet Scanning
q Designed probing policies

q Using XMap (Open-sourced tool)

q 423k (23.1%) out of 1.8M vulnerable 



@THU @OARC42

TuDoor

Discussion & Mitigation

36

ØVulnerability Disclosure
q Confirmed and fixed by all affected software: BIND9, Knot, & Microsoft

q 33 CVE-ids published & Bounty awarded by Microsoft

q Referenced by RFC 9520

ØRoot Cause
q Poor implementations failing to considering corner cases

ØMitigation Solution
q Resolvers should await a time window for promising normal response

q Ignoring queries sent to non-53 ports

ØDetection & Online Tool



@THU @OARC42

TuDoor

37

ToolPaper

Wrap-up

37

Thanks for listening!
Any question?

Xiang Li, Tsinghua University
x-l19@mails.tsinghua.edu.cn


