CoDoNS: Replacing the DNS Hierarchy
with Peers

Venugopalan Ramasubramanian (Rama)
Emin Gun Sirer

Computer Science Dept., Cornell University

Why change the DNS?

* DNS is largely successful
— Two decades of operation
— High scalability

* Requirements have increased
— Constant availability
— High performance
— Security

DNS: Problems

* Poor availability
— 80% of domain names bottle-necked at 2 servers
— 30% of domain names bottle-necked at 1 gateway

* High latencies
— Long tail in response time
— Stale bindings remain for a long time

* Vulnerable to attacks
— Cache poisoning, transitive trust
— Denial of Service (DoS)

Insight and Solution

X Hierarchical, delegation-based name resolution

4 Separate namespace management from name
resolution

* Hierarchical, decentralized namespace
— Scalable, easy to manage

* Efficient name resolution service
— High availability, performance, and security

CoDoNS: Vision

Peer-to-peer DNS

Composed of DNS
resolvers and name
servers

Self-certifying data
— DNSSEC

/

Name
ownhers

CoDoNS: Structured Overlays

hash(“www.cornell.edu”)

* Self-organization
— Failure resilience

— Scalability
Home
node
* Well-defined structure
Local — Bounded lookup time
resolver — log,N hops

— 4 hops for a million
node network

CoDoNS: Informed Caching

* Proactive caching

— Bindings pushed in
anticipation

* Proactive updates
— No timeouts

— Immediate
propagation of
updates

Local
resolver

CoDoNS: Informed Caching

* System-wide performance goals become
mathematical optimization problems

Min. Overhead s.t. Performance = Target
Max. Performance s.t. Overhead < Capacity

* Performance = lookup latency
* Overhead = bandwidth or memory

CoDoNS: Deployment

* Incrementally deployable

— Uses legacy DNS to populate resource records on
demand

— Signs and introduces bindings so that CoDoNS
nodes do not corrupt data (stop-gap)

* Retains DNS management infrastructure
— DNS registries, Root authority

* Supports legacy clients

CoDoNS: Miscellaneous

* Negative responses
— Cached temporarily

* Local names treated specially

— Queries resolved locally without introducing load
into the ring

* Server-side computation supported

— Low-TTL records not cached, replaced with
forwarding pointers

— Supports Akamai and other CDN trickery

CDF (%)

CoDoNS: Lookup Latency

100

90 -

il Legacy DNS| CoDoNS

:Z median 39 ms 2 ms
50 mean 382 ms 199 ms
401 90t % 337 ms 213 ms
30} il
20 i
10r —— codons

i L= legacydns |
?00 10’ 10° 10° 10 10°

latency (ms)

Summary

* Separate namespace management from
name resolution

* Use peer-to-peer architecture for name
resolution

— High availability, performance, and scalability

http://www.cs.cornell.edu/people/egs/beehive/

DNS: overview

.edu
| nameservers

beehive.cornell.edu

local 128.84.154.74 dns1.cornell.edu

resolver dns2.cornell.edu

delegation bottlenecks (1/2)

* survey: 593160 domain names, 164089 nameservers
* 75% of names have a bottleneck of two nameservers

100%

75%

50%

names (%)

25%

0%

Nameserver Bottlenecks

u \
«‘b?‘
G f?\o \ \
o\o ?’v b?\o o\o o\o o\o o\o o\o o\o o\o o\o q3\°
Vv S A R A R R R AP RN
. Q- Q- Q Q Q Q Q-
T [m— B

1 2 3 4 5 6 / 8 9 10 11 12 13+

number of nameservers

delegation bottlenecks (2/2)

* 60% of top-500 web sites have small bottlenecks

Nameserver Bottlenecks

100%

75%

9
o 50%
=
o©
= 259
%Qo\o Qe
0% | |
1 2 3 4 5 6 7

number of nameservers

physical bottlenecks

* 30% of domains bottlenecked at one network link

Network Bottlenecks

100%

75%

50%

domains (%)

32% 32%
e [

DoS attacks

* delegation and network bottlenecks make DoS
attacks feasible

— january 2001 attack on Microsoft nameservers

* DoS attacks high up in the hierarchy can affect
the whole system

— october 2002 attack on root servers

— roots are already disproportionately loaded
[Brownlee et al. 01a, 01Db]

* root anycast helps but does not solve the
fundamental problem

performance

* dns lookups affect web latency

— ~20-40% of web object retrieval time spent on DNS

— ~20-30% of DNS lookups take more than 1s
— [Jung et al. 01, Huitema et al. 00, Wills & Shang 00, Bent & Voelker 01]

* lame delegations
— manual administration leads to inconsistencies
— 15% of domains have lame delegations [Pappas et. al. 01]
— introduces latency up to 30 sec

* server selection

— disables caching with small timeouts (30 sec)
— increases latency up to 2 orders of magnitude [Shaikh et. al. 01]

consistency

DNS caching is timeout-driven
— conflict in choosing timeouts

fundamental tradeoff between lookup and update
performance

large timeouts

— an emergency remapping/redirection cannot be performed
unless anticipated

— 86% of records have TTLs longer than 0.5 hours

small timeouts (< 10 min)
— increased lookup latency [Jung et. al. 01, Cohen et. al. 01]

CoDoNS: Structured Overlays

* supplement and/or replacement for legacy DNS

* based on distributed hash tables (DHTs)
— self-organizing
— failure resilient
— scalable
— worst-case performance bounds

* naive application of DHTs fails to provide
performance comparable to legacy DNS

prefix-matching DHTs with caching

object 0121 = * cache along the
hash(“beehive.cornell.edu”) lookup path
0021 — may improve lookups

0112 simulations [NSDI 04]
0122 show limited impact

— heavy-tailed query
distribution

2012 — TTL expiration

latency (hops)

Beehive: lookup performance

passive caching is not\
very effective because
of heavy tail query
distribution and

—_ mutable objects.

—
L

0.5 —— Pastry '\/ .
—— PC-Pastry beehive converges to
~ Beehive | the target of 1 hop

0 8 16 24 32 40
time (hours)

CoDoNS: lookup performance (1/2)

100

|
—— codons

90+ — legacy dns

801 CoDoNS | Storage 1Bandwidth

70} mean 4217 112.2 KBps
7 60/ st. dev. 348 1 2.26
g 50 W
s 40l]

30+ o y

20| A

10+ Y i

0 | | . .

0 2 4 6 8 10 12

time (hours)

CoDoNS: flash crowds

100

—— codons
—— legacy dns

80r .

4 6 8 10 12
time (hours)
I reverse popularity injected

Beehive: zipf parameter change

Replicas per node

240 - . 1
— objects — alpha
o 200} 0.9
L=
=
. 160 ﬁ 0.8
L
— L 9
2120 078
o ©
© 80 0.6
4
© 40 0.5
0 - - ' 4
0 24 48 72 Elg

time (hours)

structured DHTs (1/2)

Name Lookup Storage Structure
CAN O(d N'd) O(d) d-dimenstional
Torus
Pastry, Tapestry, O(log N) O(log N) prefix-matching
Kademlia
Chord O(log N) O(log N) finger tables
Skipnet O(log N) O(log N) skip list
Viceroy O(log N) O(1) butterfly
Koorde, [Wieder [O(log N/loglog N) O(log N) de Bruijn graphs

& Naor 03]

O(1) structured DHTs (2/2)

Name Lookup Storage
Farsite d hops O(d N9)
[Mizrak, Cheng, 1-2 hops O(VN)
Kumar, Savage]
Kelips 1-2 hops O(VN)
[Gupta, Liskov, 1 hop O(N)
Rodrigues]

CoDoNs security

not an issue in a single administration domain
— e.g. akamai, google, msn, etc.

attacks targeted at the DHT

— Castro et al. ’02 work on secure DHTs

attacks targeted at Beehive
— outlier elimination
— limited impact

attacks targeted at CoDoNs
— DNSSEC signatures
— threshold cryptography

proactive, analysis-driven caching

optimization problem
minimize: total overhead, s.t.,
average lookup performance < C

O(1) lookup latency
— configurable target
— continuous range, better than one-hop

leverages object popularity to achieve high performance

DNS follows zipf-like popularity distribution [Jung et. al. 01]

optimization problem

* level of replication (l):

— object replicated at all nodes with | matching prefix
digits
— Iincurs at the most | hops per lookup

min: > s/bl st, > qg.l<C

s;. per object overhead

— object size, update frequency, or number of replicas (s; = 1)

q;: relative query rate of object |
b: base of DHT

analytical solution: Zipf

minimize: (number of replicas)
X, + X,/b + X,/b% + ... + X, /DK

s.t.,, K—(x,¢+ x, o+ x,0+ .. +x.,)<C

x.: fraction of objects replicated at level i
a: parameter of zipf distribution 4

. 1-a
x* = [b (K-C)] where b’ = b(-®/

| T+b + ... +b

K: highest level of replication

computational solution

relax integrality on variables

— use linear-programming or steepest-descent to find
optimal solution

— fast O(M logM) time for M objects

round-up solution to nearest integer
— at the most replicates one extra object per node

handle any popularity distribution

include fine-grained overhead
— object size, update frequency

CoDoNS operation (1/2)

* home node initially populates CoDoNS with
binding from legacy DNS
— upper-bound (K) on replication level ensures
resilience against home-node failure

* proactive caching in the background replicates
binding based on analytical model

— local measurement and limited aggregation to
estimate popularity of names and zipf parameter

— discards bindings or pushes bindings only to
neighbors

CoDoNS operation (2/2)

* dynamic adaptation

— continuously monitor popularity of names and
Increase replication to meet unanticipated demand

— handles DoS attacks and flash-crowds

* fast update propagation
— replication level indicates the locations of all the
replicas

— the home node initiates a multicast using entries in
DHT routing tables

CoDoNS name security

* all records carry cryptographic signatures

— if the nameowner has a DNSSEC nameserver, CoDoNS will
preserve the original signature

— if not, CoDoNS will sign the DNS record with its own master
key

* malicious peers cannot introduce fake bindings

* delegations are cryptographic
— names not bound to servers

CoDoNS implications

name delegations can be purchased and propagated
independently of server setup

naming hierarchy independent of physical server
hierarchy

domains may be served by multiple namespace
operators
— competitive market for delegation services

evaluation

MIT trace

— 12 hour trace, 4" December 2000
— 281,943 queries

— 47,230 domain names

Beehive: Simulation
— 1024 nodes, 40960 objects

CoDoNS: Planetlab deployment

— 75 nodes

Lookup performance
Adaptation to changes in popularity
Load balance, Update propagation [SIGCOMM 04]

latency vs. overhead tradeoff

100 x 108 bindings

CWaV~N
X1TU”

50000000

40000000

30000000

nal number of replicas per node

20000000 \

advantages of CoDoNS

* resilient
— self configures around host and network failures
— resilient against denial of service attacks
— load balances around hotspots

* high performance
— low lookup latency
— updates can be propagated at any time

* autonomic
— no manual configuration, no lame delegations

