

CoDoNS: Replacing the DNS Hierarchy
with Peers

Venugopalan Ramasubramanian (Rama)
Emin Gün Sirer

Computer Science Dept., Cornell University

Why change the DNS?

• DNS is largely successful
– Two decades of operation
– High scalability

• Requirements have increased
– Constant availability
– High performance
– Security

DNS: Problems

• Poor availability
– 80% of domain names bottle-necked at 2 servers
– 30% of domain names bottle-necked at 1 gateway

• High latencies
– Long tail in response time
– Stale bindings remain for a long time

• Vulnerable to attacks
– Cache poisoning, transitive trust
– Denial of Service (DoS)

Insight and Solution

X Hierarchical, delegation-based name resolution

Separate namespace management from name
resolution

• Hierarchical, decentralized namespace
– Scalable, easy to manage

• Efficient name resolution service
– High availability, performance, and security

CoDoNS: Vision

• Peer-to-peer DNS

• Composed of DNS
resolvers and name
servers

• Self-certifying data
– DNSSEC

Name
owners

Home
node

CoDoNS: Structured Overlays

hash(“www.cornell.edu”)

Local
resolver

• Self-organization
– Failure resilience
– Scalability

• Well-defined structure
– Bounded lookup time

– logbN hops

– 4 hops for a million
node network

CoDoNS: Informed Caching

• Proactive caching
– Bindings pushed in

anticipation

• Proactive updates
– No timeouts
– Immediate

propagation of
updates

Local
resolver

Home

CoDoNS: Informed Caching

• System-wide performance goals become
mathematical optimization problems

Min. Overhead s.t. Performance = Target

Max. Performance s.t. Overhead ≤ Capacity

• Performance = lookup latency

• Overhead = bandwidth or memory

CoDoNS: Deployment

• Incrementally deployable
– Uses legacy DNS to populate resource records on

demand
– Signs and introduces bindings so that CoDoNS

nodes do not corrupt data (stop-gap)

• Retains DNS management infrastructure
– DNS registries, Root authority

• Supports legacy clients

CoDoNS: Miscellaneous

• Negative responses
– Cached temporarily

• Local names treated specially
– Queries resolved locally without introducing load

into the ring

• Server-side computation supported
– Low-TTL records not cached, replaced with

forwarding pointers
– Supports Akamai and other CDN trickery

CoDoNS: Lookup Latency

213 ms337 ms90th %

199 ms382 msmean

2 ms39 msmedian

CoDoNSLegacy DNS

Summary

• Separate namespace management from
name resolution

• Use peer-to-peer architecture for name
resolution
– High availability, performance, and scalability

http://www.cs.cornell.edu/people/egs/beehive/

DNS: overview

beehive.cornell.edu

dns1.cornell.edu
dns2.cornell.edu

128.84.154.74

dn
s1

.c
or

ne
ll.

ed
u

dn
s2

.c
or

ne
ll.

ed
u

?beehive.cs.cornell.edu?

128.84.154.74
?beehive.cornell.e

du?

local
resolver

?c
or

ne
ll.

ed
u?

.edu
nameservers

delegation bottlenecks (1/2)
• survey: 593160 domain names, 164089 nameservers
• 75% of names have a bottleneck of two nameservers

Nameserver Bottlenecks

0.8
2%

78.4
4%

9.9
6%

4.6
4%

1.4
3%

0.3
2%

0.1
0%

0.0
6%

0.1
0%

0.0
0%

0.0
2%

0.0
0%

4.1
2%

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13+
number of nameservers

n
am

es
 (

%
)

delegation bottlenecks (2/2)

• 60% of top-500 web sites have small bottlenecks

Nameserver Bottlenecks

0.8
0%

62
.80

%

13
.20

%

13
.00

%

6.4
0%

2.6
0%

0.2
0%

0.4
0%

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8+
number of nameservers

n
am

es
 (

%
)

physical bottlenecks

• 30% of domains bottlenecked at one network link

1 2 3 4 5 6 7 8 9 10+
0%

25%

50%

75%

100%

32% 32%

17%

9%
3% 2% 1% 2% 0% 1%

Network Bottlenecks

number of bottleneck links

do
m

ai
ns

 (%
)

DoS attacks

• delegation and network bottlenecks make DoS
attacks feasible
– january 2001 attack on Microsoft nameservers

• DoS attacks high up in the hierarchy can affect
the whole system
– october 2002 attack on root servers
– roots are already disproportionately loaded

[Brownlee et al. 01a, 01b]

• root anycast helps but does not solve the
fundamental problem

performance

• dns lookups affect web latency
– ~20-40% of web object retrieval time spent on DNS
– ~20-30% of DNS lookups take more than 1s
– [Jung et al. 01, Huitema et al. 00, Wills & Shang 00, Bent & Voelker 01]

• lame delegations
– manual administration leads to inconsistencies
– 15% of domains have lame delegations [Pappas et. al. 01]
– introduces latency up to 30 sec

• server selection
– disables caching with small timeouts (30 sec)
– increases latency up to 2 orders of magnitude [Shaikh et. al. 01]

consistency

• DNS caching is timeout-driven
– conflict in choosing timeouts

• fundamental tradeoff between lookup and update
performance

• large timeouts
– an emergency remapping/redirection cannot be performed

unless anticipated
– 86% of records have TTLs longer than 0.5 hours

• small timeouts (< 10 min)
– increased lookup latency [Jung et. al. 01, Cohen et. al. 01]

CoDoNS: Structured Overlays

• supplement and/or replacement for legacy DNS

• based on distributed hash tables (DHTs)
– self-organizing
– failure resilient
– scalable
– worst-case performance bounds

• naïve application of DHTs fails to provide
performance comparable to legacy DNS

prefix-matching DHTs with caching

• cache along the
lookup path
– may improve lookups

• simulations [NSDI 04]
show limited impact
– heavy-tailed query

distribution

– TTL expiration

0122

object 0121 =
hash(“beehive.cornell.edu”)

2012

0021

0112

0 8 16 24 32 40
0

0.5

1

1.5

2

2.5

3

time (hours)

la
te

n
cy

 (
h

o
p

s)

Pastry
PC-Pastry
Beehive

Beehive: lookup performance

passive caching is not
very effective because

of heavy tail query
distribution and
mutable objects.

beehive converges to
the target of 1 hop

CoDoNS: lookup performance (1/2)

2.26348st. dev.
12.2 KBps4217mean

BandwidthStorageCoDoNS

CoDoNS: flash crowds

reverse popularity injected

Beehive: zipf parameter change

structured DHTs (1/2)

de Bruijn graphsO(log N)O(log N/loglog N)Koorde, [Wieder
& Naor 03]

butterflyO(1)O(log N)Viceroy

skip listO(log N)O(log N)Skipnet

finger tablesO(log N)O(log N)Chord

prefix-matchingO(log N)O(log N)Pastry, Tapestry,
Kademlia

d-dimenstional
Torus

O(d)O(d N1/d)CAN

StructureStorageLookupName

O(1) structured DHTs (2/2)

O(√N)1-2 hops[Mizrak, Cheng,
Kumar, Savage]

O(N)1 hop[Gupta, Liskov,
Rodrigues]

O(d N1/d)d hopsFarsite

StorageLookupName

O(√N)1-2 hopsKelips

CoDoNs security

• not an issue in a single administration domain
– e.g. akamai, google, msn, etc.

• attacks targeted at the DHT
– Castro et al. ’02 work on secure DHTs

• attacks targeted at Beehive
– outlier elimination
– limited impact

• attacks targeted at CoDoNs
– DNSSEC signatures
– threshold cryptography

proactive, analysis-driven caching

• optimization problem
minimize: total overhead, s.t.,

average lookup performance ≤ C
• O(1) lookup latency

– configurable target
– continuous range, better than one-hop

• leverages object popularity to achieve high performance

• DNS follows zipf-like popularity distribution [Jung et. al. 01]

optimization problem

• level of replication (l):
– object replicated at all nodes with l matching prefix

digits
– incurs at the most l hops per lookup

•
min: Σ si / b

li s.t., Σ qi.li ≤ C

si: per object overhead

– object size, update frequency, or number of replicas (si = 1)

qi: relative query rate of object i

b: base of DHT

minimize: (number of replicas)
x0 + x1/b + x2/b2 + … + xK-1/bK-1

s.t., K – (x0
1-α + x1

1-α + x2
1-α + … + xK-1

1-α) ≤ C

xi: fraction of objects replicated at level i
α: parameter of zipf distribution

K: highest level of replication

analytical solution: Zipf

b’i (K – C)

1 + b’ + … + b’K-1

1
1 - α[]x*i = where b’ = b(1- α) /α

computational solution

• relax integrality on variables
– use linear-programming or steepest-descent to find

optimal solution
– fast O(M logM) time for M objects

• round-up solution to nearest integer
– at the most replicates one extra object per node

• handle any popularity distribution
• include fine-grained overhead

– object size, update frequency

CoDoNS operation (1/2)

• home node initially populates CoDoNS with
binding from legacy DNS
– upper-bound (K) on replication level ensures

resilience against home-node failure

• proactive caching in the background replicates
binding based on analytical model
– local measurement and limited aggregation to

estimate popularity of names and zipf parameter
– discards bindings or pushes bindings only to

neighbors

CoDoNS operation (2/2)

• dynamic adaptation
– continuously monitor popularity of names and

increase replication to meet unanticipated demand
– handles DoS attacks and flash-crowds

• fast update propagation
– replication level indicates the locations of all the

replicas
– the home node initiates a multicast using entries in

DHT routing tables

CoDoNS name security

• all records carry cryptographic signatures
– if the nameowner has a DNSSEC nameserver, CoDoNS will

preserve the original signature
– if not, CoDoNS will sign the DNS record with its own master

key

• malicious peers cannot introduce fake bindings

• delegations are cryptographic
– names not bound to servers

CoDoNS implications

• name delegations can be purchased and propagated
independently of server setup

• naming hierarchy independent of physical server
hierarchy

• domains may be served by multiple namespace
operators
– competitive market for delegation services

evaluation

• MIT trace
– 12 hour trace, 4th December 2000
– 281,943 queries
– 47,230 domain names

• Beehive: Simulation
– 1024 nodes, 40960 objects

• CoDoNS: Planetlab deployment
– 75 nodes

• Lookup performance
• Adaptation to changes in popularity
• Load balance, Update propagation [SIGCOMM 04]

latency vs. overhead tradeoff

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10000000

20000000

30000000

40000000

50000000

Zipf 0.8

Zipf 0.9

Zipf 1.0

target lookup performance (hops)

o
p

ti
m

a
l

n
u

m
b

e
r

o
f

re
p

li
c

a
s

 p
e

r
n

o
d

e

x106

100 x 106 bindings

advantages of CoDoNS

• resilient
– self configures around host and network failures
– resilient against denial of service attacks
– load balances around hotspots

• high performance
– low lookup latency
– updates can be propagated at any time

• autonomic
– no manual configuration, no lame delegations

