
An Automated Incident Response System Using
BIND Query Logs

John Kristoff
UltraDNS

jtk@ultradns.net

June 2, 2006

BIND Query Logs

• Easy to enable and collect, some disk space required

• Easy to parse, summarize and search

• Amenable to usage and behavior analysis

• Lacks all answer data and some query detail

Bot Detection Through DNS Query Monitoring

• Most bots do a lookup using a call to the local resolver

• Most bots use a domain name dedicated for the botnet

• Almost nothing but a bot would query for these names

How to Get This Deployed at Northwestern

• Make sure this offloads work to local admins

• Tune the false positive rate to be, in practice, practically zero

• Do not wait for someone to give you the OK before building it

• Pretend to be an expert by giving a NANOG botnets
presentation

Northwestern User Status Agent (NUSA)

• Delegate network control and responsibility to local admins

• e.g. switch port config, zone maintenance, usage reports

• Web-based portal - A bunch of Perl scripts and MySQL

• A security event results in port deactivation and/or alert

NUSA DNS Bot Detection Overview

• Take a list of known bad domain names

• Tail your BIND query logs looking for said names

• If you detect badness, insert/update detail into database

• Generate alert to local admin with link to summary details

A tail, a regex and a database injection

• do: tail -f logfile | querywatch -c badnames.txt | query2db

1. tail logfile in real time, restart process when log is rotated

2. init a bad names list and do regex fu on the STDIN

3. send details of a matching query to a database for processing

Control scripts

• One script runs in crontab immediately after log rotation

• Kills old tail, regex, db injection children and parents

• Loops until new log starts

• The crontab script starts a second script

• The second just restarts the tail/regex/dbinject processes

querywatch

• Two modes, exact query match (express) and substring match

• Express for speed

• Substring match for search zone appends

• Substring match with sampling reduces false positives

• However, substring match with sampling misses stable bots

• http://aharp.ittns.northwestern.edu/software/querywatch

query2db

• Parse timestamp, query source, query name, type, class

• Ignore netblocks we do not administer

• Ignore well known caching/forwarding DNS servers

• Ignore any other whitelisted hosts

• Insert bad query detail into a remote database

• http://aharp.ittns.northwestern.edu/software/query2db

DNS Query Log Monitor Database

• Simple, but imperfect MySQL database schema

• Separate fields for db insert time and log timestamp

• Each query from querywatch likely to be a new db record

• NUSA periodically scanned this table for new incidents

Lessons Learned

• No false positives as far as I could tell

• Probably could have used express mode

• Mostly neutered bots, fixing them not a priority

• Alerts were ignored, could have used an escalation process

Appendix A - Other BIND Query Log Related Stuff

• http://aharp.ittns.northwestern.edu/software/
I named-report

• http://www.nanog.org/mtg-0410/kristoff.html

• http://aharp.ittns.northwestern.edu/talks/bots-dns.pdf

• http://www.internet2.edu/presentations/jtsaltlake/
I 20050214-Botnets-Moody.pdf

• www.cc.kumamoto-u.ac.jp/˜musashi/

Appendix A - crontab script

#!/bin/sh

note: fully qualified paths removed to conserve space

TODAY="‘/bin/date +%Y-%m-%d‘"

LOGS=/path/to/bind/query/logs

parentPID=‘cat /path/to/dnsbotmon/process.pid‘

ps -afe | awk ’$3==’$parentPID’ print $2’ | xargs kill

kill $parentPID > /dev/null 2>&1

while :

do

if ls $LOGS/server1-$TODAY.log $LOGS/server2-$TODAY > /dev/null 2>&1

then

dnsbotmon.sh &

echo $! > /var/run/dnsbotmon.pid

break

fi

done

Appendix A - dnsbotmon script

#!/bin/sh

LOGS=/path/to/bind/query/logs

BADNAMES=/path/to/bad/names/list

TODAY="‘date +%Y-%m-%d‘"

tail -f $LOGS/*-$TODAY.log | querywatch -c $BADNAMES | query2db

