An Automated Incident Response System Using
BIND Query Logs

John Kristoff
UltraDNS
jtk@ultradns.net

June 2, 2006

BIND Query Logs

Easy to enable and collect, some disk space required
Easy to parse, summarize and search
Amenable to usage and behavior analysis

Lacks all answer data and some query detail

Bot Detection Through DNS Query Monitoring

e Most bots do a lookup using a call to the local resolver
e Most bots use a domain name dedicated for the botnet

e Almost nothing but a bot would query for these names

How to Get This Deployed at Northwestern

Make sure this offloads work to local admins
Tune the false positive rate to be, in practice, practically zero
Do not wait for someone to give you the OK before building it

Pretend to be an expert by giving a NANOG botnets
presentation

Northwestern User Status Agent (NUSA)

Delegate network control and responsibility to local admins
e.g. switch port config, zone maintenance, usage reports
Web-based portal - A bunch of Perl scripts and MySQL

A security event results in port deactivation and/or alert

NUSA DNS Bot Detection Overview

Take a list of known bad domain names
Tail your BIND query logs looking for said names
If you detect badness, insert/update detail into database

Generate alert to local admin with link to summary details

A tail, a regex and a database injection

do: tail -f logfile | querywatch -c badnames.txt | query2db

1. tail logfile in real time, restart process when log is rotated

2. init a bad names list and do regex fu on the STDIN

3. send details of a matching query to a database for processing

Control scripts

One script runs in crontab immediately after log rotation
Kills old tail, regex, db injection children and parents
Loops until new log starts

The crontab script starts a second script

The second just restarts the tail /regex/dbinject processes

querywatch

Two modes, exact query match (express) and substring match
Express for speed

Substring match for search zone appends

Substring match with sampling reduces false positives
However, substring match with sampling misses stable bots

http://aharp.ittns.northwestern.edu/software/querywatch

query2db

Parse timestamp, query source, query name, type, class
Ignore netblocks we do not administer

Ignore well known caching/forwarding DNS servers
Ignore any other whitelisted hosts

Insert bad query detail into a remote database

http://aharp.ittns.northwestern.edu/software/query2db

DNS Query Log Monitor Database

Simple, but imperfect MySQL database schema
Separate fields for db insert time and log timestamp
Each query from querywatch likely to be a new db record

NUSA periodically scanned this table for new incidents

Lessons Learned

No false positives as far as | could tell
Probably could have used express mode
Mostly neutered bots, fixing them not a priority

Alerts were ignored, could have used an escalation process

Appendix A - Other BIND Query Log Related Stuff

http://aharp.ittns.northwestern.edu/software/
» named-report

http://www.nanog.org/mtg-0410/kristoff.html

http://aharp.ittns.northwestern.edu/talks/bots-dns.pdf
http://www.internet2.edu/presentations/jtsaltlake/
» 20050214-Botnets-Moody.pdf

e www.cc.kumamoto-u.ac.jp/“musashi/

Appendix A - crontab script

#!/bin/sh
note: fully qualified paths removed to conserve space
TODAY="‘/bin/date +%Y-Ym-7%d‘"
L0OGS=/path/to/bind/query/logs
parentPID=‘cat /path/to/dnsbotmon/process.pid¢
ps -afe | awk ’$3==’$parentPID’ print $2° | xargs kill
kill $parentPID > /dev/null 2>&1
while :
do
if 1s $LOGS/server1-$TODAY.log $LOGS/server2-$TODAY > /dev/null 2>&1
then
dnsbotmon.sh &
echo $! > /var/run/dnsbotmon.pid
break
fi
done

Appendix A - dnsbotmon script

#!/bin/sh
LOGS=/path/to/bind/query/logs
BADNAMES=/path/to/bad/names/list
TODAY=""‘date +4Y-/m-%d‘"

tail -f $LOGS/*-$TODAY.log | querywatch -c $BADNAMES | query2db

