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● Implemented via liboqs (with regular unassigned algorithm numbers)
○ Falcon512
○ Dilithium2
○ SPHINCS+-SHA256-128s
○ XMSSmt-SHA256-h40-4 / XMSSmt-SHA256-h40-8 (and other parameter sets)

● Measurements using RIPE ATLAS (~10,000 probes, ~2M queries in May 2024)

● Deployed BIND9 and Powerdns based zones

● Output variables: Rcode, Correctness, AD bit, response time

● Pre-selection: Exclude …
○ probe-resolver combinations with incorrect response for RSA-SHA256 (due to noise)
○ resolvers in private IP ranges (due to RIPE ATLAS limitation for TCP)
○ timeouts and network errors

Steps Taken
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Correct responses for a valid label
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Correct responses for a nonexistent label



Queries Using a PQC-aware Resolver
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dig +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304

;; Truncated, retrying in TCP mode.

; <<>> DiG 9.18.24-0ubuntu0.22.04.1-Ubuntu <<>> +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22245
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
; COOKIE: 8455829f86d7fb7601000000669b5d9517dfc67dff539cac (good)
;; QUESTION SECTION:
;dilithium2.pdns.pq-dnssec.dedyn.io. IN A

;; ANSWER SECTION:
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN A 95.217.209.184
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN RRSIG A 18 5 3600 20240801000000 20240711000000 3978 dilithium2.pdns.pq-dnssec.ded
yn.io. 19/28JXGCgGbNtEAtUOzv1/SzP+kr6vBlglWrJ/ZfYgdC1DXZHdh+xol rnZ9uhvmADCqZzJXOyOU1Tyw2sHN32Vmcv4KLR8lI7TBwfTJq6T3nGfV oQnv9
DNvPJTyb4VonYH3fLTMYeQ3/0Wy9gbv0ngy55QqRjw+ikhS0yIp ezpZYH3ArY/xxmTgM7OBW0yBg3gXgo1G2mrX97ufqrwkO/n0Vu/xXfSI npGKq+dVu7LQQR7nM
lmM3FkbaRAFyo0FjmbzXDPtyrwJekJP8dfQ5zvc pOCRfrpjRg+ZBUofhdk1PURO539JwD[...shortened...]AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAABAcJzc=

;; Query time: 56 msec
;; SERVER: 35.232.14.170#5304(bind9.pq-dnssec.dedyn.io) (TCP)
;; WHEN: Fri Jul 19 23:47:49 PDT 2024
;; MSG SIZE  rcvd: 2593



Try it yourself!
https://pq-dnssec.dedyn.io/

(also has detailed results)
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What we observed
● Transmission issues are real

○ PQC response delivery rates go down significantly as response sizes increase → Falcon leads
○ Gets worse depending on circumstances, like with DO bit or with NSEC3

● UDP & DO=0:
~70% KSK/ZSK responses correct
~80% CSK responses correct
○ Goes up by ~10% via TCP

● UDP & DO=1:
~50% responses correct
○ Goes up by ~20–40% via TCP

● 8.5% of probe-resolver pairs claim successfully validating Falcon
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The Future? Merkle Trees
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● Want to use PQC while keeping messages small

● Use Merkle trees to compress zone signing overhead
○ Signatures become authenticating paths

○ ZSK DNSKEY becomes the root hash

○ KSK is some secure algorithm with unpleasantly long signatures

→ replace with small Merkle authenticating path



What is a Merkle Tree?
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H1 = 
hash(RRset1)

H2 = 
hash(RRset2)

H3 = 
hash(RRset3)

H4 = 
hash(RRset4)

H5 = 
hash(H1+H2)

H6 = 
hash(H3+H4)

H7 = 
hash(H5+H6)
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Can we apply this to DNS?
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Sure!
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- Use a Standardized DNSSEC Algorithm for our KSK
- Provides Authenticity and Integrity

- Define a new “Merkle Tree” algorithm and store its root hash in the ZSK rdata
- Provides Integrity via proof of inclusion + gets Authenticity from being signed by KSK

- Signatures become the authenticating path of the Merkle tree
- Grow logarithmically with the number of RRSets in a zone 

- We can combine the work from Batched Signatures Revisited [1] to reduce hash 
size without reducing security (Second Preimage Resistance)

[1] https://pub.sandboxaq.com/publications/batch-signatures-revisited

https://pub.sandboxaq.com/publications/batch-signatures-revisited


We need to change some things about DNS first…

- Circular signing is an issue
- Everytime you sign something, the Merkle tree changes, and its root node (ZSK) changes
- Everytime the root node changes, the keytag changes → signature’s input changes

- We need to allow for our DNSKEY set to have “disjoint” algorithms
- The DNSKEY set cannot be a part of the Merkle Tree

- We need to change how RRSets are signed when using a Merkle Tree
- We cannot include the key tag as part of the data being signed
- We cannot require RRSIGs for all DNSKEY algorithms

- Instead, DNSKEY is signed with KSK algorithm, and all else signed with ZSK algorithm
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We get two nice wins

14



DNS messages without DNSKEY set stay below line of peril!
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Tiny zone transfers

- Since a private key isn’t involved, we can have all secondary servers rebuild the 

tree and authenticating paths

- Interesting trade-off: We can transmit empty signatures during zone transfers 

greatly reducing the size of the zone
- Only one signature in zone transfer (for DNSKEY RRset)

We don’t have an implementation for this
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Was there a difference in the ATLAS tests?
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Correct responses for a valid label
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Correct responses for a nonexistent label



dnssec-signzone

- Currently only supports offline signing

- Heavy modifications to BIND’s dnssec-signzone
- Iterate through all RRSets and add them to the Merkle tree

- Finalize the Merkle tree and update keytag

- Iterate over all RRSIGs and insert the correct authenticating path and keytag

- Takes about half the time of signing the same zone with ECDSA

- Additional optimization opportunities might be possible
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Some takeaways for Merkle trees

- DNSSEC protocol changes would need to be made

- By defining it with its own algorithm id you can use Merkle trees with any other 

DNSSEC algorithm

- Zone updates are limited by the root node’s (ZSK) TTL
- Verisign’s MTL might help with this?

- DNSKEY messages are not compressed

- Improve deliverability for large signature zones

- Unlike stateful hash based signatures draft no central state is required to be 

maintained
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Questions?

Thank you!

   Acknowledgments:
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● In 2022, performed (local-only) DNSSEC study with Falcon in PowerDNS
○ Results: https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns

● Now: Broader experiments with multiple PQC algorithms
○ fast validation, short signatures, short-ish keys

● Goal: Public deployment on the Internet, to investigate …
○ behavior of non-PQC-aware resolvers typically used by clients
○ behavior of PQC-aware resolvers

● Parameters:
○ KSK/ZSK (BIND) vs. CSK (PowerDNS)
○ Name existence and NSEC vs. [NSEC3 conventional (BIND) vs. minimal (PowerDNS)]
○ UDP vs. TCP
○ DO bit

Context & Motivation
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https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns


Algorithm Considerations
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● Selected algorithms with public keys and signatures < 10 KB
● Plus: a stateful hash-based algorithm (XMSS)

Müller, M. et al.: Retrofitting post-quantum cryptography in internet protocols: a case study of DNSSEC. SIGCOMM Comput. Commun. Rev. 50, 49–57 (2020)

https://dl.acm.org/doi/10.1145/3431832.3431838
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Backup: Outlook
● Fixing may require revamping signature representation in DNS

○ ARRF?

○ Does not necessarily involve a wire format / spec change

○ Or will more robust DoT/DoH/DoQ gain enough traction?

● What would it take to make the root quantum-safe?
○ Further complications from double-signing – is this really needed?

● To transition, any scalable solution will require DS provisioning automation

● Future work needed!

→ Research agenda
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https://uwspace.uwaterloo.ca/handle/10012/18966
https://datatracker.ietf.org/doc/draft-fregly-research-agenda-for-pqc-dnssec/

