
Field Experiments
on Post-Quantum DNSSEC

Jason Goertzen <jason.goertzen@sandboxaq.com>
Peter Thomassen <peter@desec.io>
Nils Wisiol <nils@desec.io>

DNS OARC, Prague – Oct 27, 2024

mailto:jason.goertzen@sandboxquantum.com
mailto:peter@desec.io
mailto:nils@desec.io

● Implemented via liboqs (with regular unassigned algorithm numbers)
○ Falcon512
○ Dilithium2
○ SPHINCS+-SHA256-128s
○ XMSSmt-SHA256-h40-4 / XMSSmt-SHA256-h40-8 (and other parameter sets)

● Measurements using RIPE ATLAS (~10,000 probes, ~2M queries in May 2024)

● Deployed BIND9 and Powerdns based zones

● Output variables: Rcode, Correctness, AD bit, response time

● Pre-selection: Exclude …
○ probe-resolver combinations with incorrect response for RSA-SHA256 (due to noise)
○ resolvers in private IP ranges (due to RIPE ATLAS limitation for TCP)
○ timeouts and network errors

Steps Taken

2

3

Correct responses for a valid label

4

Correct responses for a nonexistent label

Queries Using a PQC-aware Resolver

5

dig +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304

;; Truncated, retrying in TCP mode.

; <<>> DiG 9.18.24-0ubuntu0.22.04.1-Ubuntu <<>> +dnssec A dilithium2.pdns.pq-dnssec.dedyn.io @bind9.pq-dnssec.dedyn.io -p 5304
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22245
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
; COOKIE: 8455829f86d7fb7601000000669b5d9517dfc67dff539cac (good)
;; QUESTION SECTION:
;dilithium2.pdns.pq-dnssec.dedyn.io. IN A

;; ANSWER SECTION:
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN A 95.217.209.184
dilithium2.pdns.pq-dnssec.dedyn.io. 3599 IN RRSIG A 18 5 3600 20240801000000 20240711000000 3978 dilithium2.pdns.pq-dnssec.ded
yn.io. 19/28JXGCgGbNtEAtUOzv1/SzP+kr6vBlglWrJ/ZfYgdC1DXZHdh+xol rnZ9uhvmADCqZzJXOyOU1Tyw2sHN32Vmcv4KLR8lI7TBwfTJq6T3nGfV oQnv9
DNvPJTyb4VonYH3fLTMYeQ3/0Wy9gbv0ngy55QqRjw+ikhS0yIp ezpZYH3ArY/xxmTgM7OBW0yBg3gXgo1G2mrX97ufqrwkO/n0Vu/xXfSI npGKq+dVu7LQQR7nM
lmM3FkbaRAFyo0FjmbzXDPtyrwJekJP8dfQ5zvc pOCRfrpjRg+ZBUofhdk1PURO539JwD[...shortened...]AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAABAcJzc=

;; Query time: 56 msec
;; SERVER: 35.232.14.170#5304(bind9.pq-dnssec.dedyn.io) (TCP)
;; WHEN: Fri Jul 19 23:47:49 PDT 2024
;; MSG SIZE rcvd: 2593

Try it yourself!
https://pq-dnssec.dedyn.io/

(also has detailed results)

6

https://pq-dnssec.dedyn.io/

What we observed
● Transmission issues are real

○ PQC response delivery rates go down significantly as response sizes increase → Falcon leads
○ Gets worse depending on circumstances, like with DO bit or with NSEC3

● UDP & DO=0:
~70% KSK/ZSK responses correct
~80% CSK responses correct
○ Goes up by ~10% via TCP

● UDP & DO=1:
~50% responses correct
○ Goes up by ~20–40% via TCP

● 8.5% of probe-resolver pairs claim successfully validating Falcon

7

The Future? Merkle Trees

8

● Want to use PQC while keeping messages small

● Use Merkle trees to compress zone signing overhead
○ Signatures become authenticating paths

○ ZSK DNSKEY becomes the root hash

○ KSK is some secure algorithm with unpleasantly long signatures

→ replace with small Merkle authenticating path

What is a Merkle Tree?

9

H1 =
hash(RRset1)

H2 =
hash(RRset2)

H3 =
hash(RRset3)

H4 =
hash(RRset4)

H5 =
hash(H1+H2)

H6 =
hash(H3+H4)

H7 =
hash(H5+H6)

What is a Merkle Tree?

10

H1 =
hash(RRset1)

H2 =
hash(RRset2)

H3 =
hash(RRset3)

H4 =
hash(RRset4)

H5 =
hash(H1+H2)

H6 =
hash(H3+H4)

H7 =
hash(H5+H6)

Can we apply this to DNS?

11

Sure!

12

- Use a Standardized DNSSEC Algorithm for our KSK
- Provides Authenticity and Integrity

- Define a new “Merkle Tree” algorithm and store its root hash in the ZSK rdata
- Provides Integrity via proof of inclusion + gets Authenticity from being signed by KSK

- Signatures become the authenticating path of the Merkle tree
- Grow logarithmically with the number of RRSets in a zone

- We can combine the work from Batched Signatures Revisited [1] to reduce hash
size without reducing security (Second Preimage Resistance)

[1] https://pub.sandboxaq.com/publications/batch-signatures-revisited

https://pub.sandboxaq.com/publications/batch-signatures-revisited

We need to change some things about DNS first…

- Circular signing is an issue
- Everytime you sign something, the Merkle tree changes, and its root node (ZSK) changes
- Everytime the root node changes, the keytag changes → signature’s input changes

- We need to allow for our DNSKEY set to have “disjoint” algorithms
- The DNSKEY set cannot be a part of the Merkle Tree

- We need to change how RRSets are signed when using a Merkle Tree
- We cannot include the key tag as part of the data being signed
- We cannot require RRSIGs for all DNSKEY algorithms

- Instead, DNSKEY is signed with KSK algorithm, and all else signed with ZSK algorithm

13

We get two nice wins

14

DNS messages without DNSKEY set stay below line of peril!

15

Tiny zone transfers

- Since a private key isn’t involved, we can have all secondary servers rebuild the

tree and authenticating paths

- Interesting trade-off: We can transmit empty signatures during zone transfers

greatly reducing the size of the zone
- Only one signature in zone transfer (for DNSKEY RRset)

We don’t have an implementation for this

16

Was there a difference in the ATLAS tests?

17

18

Correct responses for a valid label

19

Correct responses for a nonexistent label

dnssec-signzone

- Currently only supports offline signing

- Heavy modifications to BIND’s dnssec-signzone
- Iterate through all RRSets and add them to the Merkle tree

- Finalize the Merkle tree and update keytag

- Iterate over all RRSIGs and insert the correct authenticating path and keytag

- Takes about half the time of signing the same zone with ECDSA

- Additional optimization opportunities might be possible

20

Some takeaways for Merkle trees

- DNSSEC protocol changes would need to be made

- By defining it with its own algorithm id you can use Merkle trees with any other

DNSSEC algorithm

- Zone updates are limited by the root node’s (ZSK) TTL
- Verisign’s MTL might help with this?

- DNSKEY messages are not compressed

- Improve deliverability for large signature zones

- Unlike stateful hash based signatures draft no central state is required to be

maintained

21

Questions?

Thank you!

 Acknowledgments:

22

● In 2022, performed (local-only) DNSSEC study with Falcon in PowerDNS
○ Results: https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns

● Now: Broader experiments with multiple PQC algorithms
○ fast validation, short signatures, short-ish keys

● Goal: Public deployment on the Internet, to investigate …
○ behavior of non-PQC-aware resolvers typically used by clients
○ behavior of PQC-aware resolvers

● Parameters:
○ KSK/ZSK (BIND) vs. CSK (PowerDNS)
○ Name existence and NSEC vs. [NSEC3 conventional (BIND) vs. minimal (PowerDNS)]
○ UDP vs. TCP
○ DO bit

Context & Motivation

23

https://blog.powerdns.com/2022/04/07/falcon-512-in-powerdns

Algorithm Considerations

24

● Selected algorithms with public keys and signatures < 10 KB
● Plus: a stateful hash-based algorithm (XMSS)

Müller, M. et al.: Retrofitting post-quantum cryptography in internet protocols: a case study of DNSSEC. SIGCOMM Comput. Commun. Rev. 50, 49–57 (2020)

https://dl.acm.org/doi/10.1145/3431832.3431838

25

26

27

Backup: Outlook
● Fixing may require revamping signature representation in DNS

○ ARRF?

○ Does not necessarily involve a wire format / spec change

○ Or will more robust DoT/DoH/DoQ gain enough traction?

● What would it take to make the root quantum-safe?
○ Further complications from double-signing – is this really needed?

● To transition, any scalable solution will require DS provisioning automation

● Future work needed!

→ Research agenda

28

https://uwspace.uwaterloo.ca/handle/10012/18966
https://datatracker.ietf.org/doc/draft-fregly-research-agenda-for-pqc-dnssec/

