
John Todd - 26/27 October 2024 DNS-OARC Prague CZ v1

Introduction to Vector
 & Lessons Learned

dnstap ingestion, enrichment, and aggregation

Non-goals/assumptions for sake of time

• Not a review of all possible dnstap logging/parsing systems - fluent bit,
fluentd, logstash, dtap, etc. Honorable mention: Denis Machard’s go-
dnscollector is amazingly useful and dnstap-focused.

• Not a review of all backend storage (logstash, redis, clickhouse, etc.)

• Not an introduction to dnstap

• You know what a TSDB is (even better, you run Prometheus)

• You have a lot of free time to get pulled into a deep rabbit hole

2

The Problem:

How to interpret network and application current
conditions & long-term behaviors with too much
data to consume in a limited-resource environment?

3

Partial answer: dnstap!

Sub-problems:

• Too much of it
• Each event is an island
• Privacy concerns
• Not complete enough (layer 3 context missing)

4

Producers of dnstap

5

• dnsdist, PDNS-recursor, Unbound, BIND

• front-end (client) traffic

• back-end (recursive-to-authoritative) traffic

• block traffic (we treat as separate dnstap output)

• at the core: need a kafka reader

Consumers of dnstap (or summaries)

6

• kafka

• clickhouse

• redis summary engine(s)

• files (for blocking summaries)

• prometheus scraping

Requirements
So we need:

 - aggregation of dnstap streams

- sampling & aggregation of DNS events

- transformation of dnstap data into “something else” (kafka, protobuf, files, etc.)

- ability to extensively apply logic to dnstap data to exclude, modify, enrich events

Constraints:

- run at the edge of the network - small memory/CPU footprint

- simple to configure

- scales well horizontally & vertically for larger sites
7

https://vector.dev/

8

Vector
Observability pipeline construction

• It is a protocol adapter - convert A to B

• It performs transformations - re-write, edit, delete, split events

• It is an enrichment tool - MMDB, CSV, DNS lookups

• It is an aggregation tool - summarize many events into one metric

• Sampling and “circuit breaker” throttles to prevent overloads

• It does more than it should, probably

9

Vector
Observability pipeline construction - transforms

From most-to-least used in our configurations:
• Remap
• Aggregate
• Log-to-metric
• Metric-to-log
• Sample
• Throttle
• Filter
• Lua
• Reduce
• Route
• Tag cardinality limit

10

Formats for sources / sinks <deep breath>

AMQP, Apache Metrics, AppSignal, AWS ECS Metrics/SQS/SNS/S3/
Cloudwatch/Kinesis Firehose, Axiom, Azure Blob Storage, Azure Monitor
logs, ClickHouse, Console, Datadog agent/logs/metrics, Databend,
dnstap, Docker logs, Elasticsearch, EventStore DB, Exec(stdout), File,
File descriptor, Fluent, GCP PubSub, GCP Chronicle Unstructured, GCP
Cloud Monitoring, Greptime DB logs, GreptimeDB metrics, Heroku
Logplex, Honeycomb, Host metrics, HTTP Client, HTTP Server, Humio
Logs, Humio Metrics, InfluxDB metrics, InfluxDB logs, Internal logs,
Internal metrics, JournalD, Kafka, Kubernetes logs, Logstash, Loki,
Mezmo/LogDNA, MongoDB metrics, MQTT, NATS, NGINX metrics, New
Relic, OpenTelemetry, PostgreSQL metrics, Prometheus Pushgateway,
Prometheus remote write, Prometheus scrape, Pulsar, Redis, Sematext
logs, Sematext metrics, Socket client (protobuf), Splunk HEC, Static
metrics, StatsD, stdin, Syslog, WebHDFS, Websocket, Vector

11

Vector
Actually two different large codebases - all in Rust

Vector:
 - handles source/sink/transforms

VRL:
 - Vector Remap Language - forms the core of the “remap” function, with
ability to perform transformations on “event” data (aka: json objects.)
This is where the heavy lifting is done.

They are closely tied together but are distinct.

12

Maslow’s hammer?

13

“it is tempting, if the only
tool you have is a hammer,
to treat everything as if it
were a nail.”

So it’s a log parser - is it really useful for
dnstap at scale?

14

Yes.

15

But.

16

But.

17

It needed some extensions.
It was not very DNS-aware.

DNS-specific abilities / functions
Work funded by Quad9

• punycode encoder/decoder/validator, optional 0x20 un-uppercasing
syntax, sieve to replace invalid chars

• lowercasing support in dnstap natively

• Extended MMDB support for geoIP (and other) lookup files with
arbitrary fields

• dnstap over TCP and PowerDNS-style protobuf ingestion

• Extended QTYPE/EDNS expansions (still not complete)

• Much wider range of aggregations (sum, max, mean, last, etc.)

18

More DNS-specific abilities / functions
Work funded by Quad9

• Mozilla PSL enrichment (with custom PSL file support)

• dns_lookup to perform queries and include results

• additional GraphViz inclusions for self-documentation support

• Coming soon! Local memory-based caching across threads.

19

Bonus nice features we use frequently

• Graphviz - self-documenting, self-drawing configurations

• VRL sandbox for testing json parsing logic

• Extremely descriptive error messages

• Terminal-based “vector top” view shows realtime in/out events/bytes
per component

20

Some fixed-width text
examples

21

root@vector-test:/home/jtodd# cat /etc/vector/dnstap-demo.yaml
simplest possible Vector dnstap configuration example:
sources:
 dnstap-from-dnsdist:
 type: "dnstap"
 mode: tcp
 address: "192.168.70.176:6000"
 permit_origin: ["192.168.70.0/24"]
 multithreaded: true

sinks:
 send-to-local-file:
 type: file
 inputs: ["dnstap-from-dnsdist"]
 path: /tmp/dnstap-data-%Y-%m-%d.log
 encoding:
 codec: "json"

22

root@vector-test:/etc/vector# vector -c dnstap-demo.yaml
2024-10-10T02:39:03.835902Z INFO vector::app: Log level is enabled. level="info"
2024-10-10T02:39:03.836927Z INFO vector::app: Loading configs. paths=["dnstap-demo.yaml"]
2024-10-10T02:39:03.843157Z INFO vector::topology::running: Running healthchecks.
2024-10-10T02:39:03.843264Z INFO vector: Vector has started. debug="false" version=“0.41.1"
arch="x86_64" revision="745babd 2024-09-11 14:55:36.802851761"
2024-10-10T02:39:03.843315Z INFO vector::app: API is disabled, enable by setting `api.enabled`
to `true` and use commands like `vector top`.
2024-10-10T02:39:03.843315Z INFO vector::topology::builder: Healthcheck passed.
2024-10-10T02:39:03.843337Z INFO source{component_kind="source" component_id=dnstap-from-dnsdist
component_type=dnstap}: vector::sources::util::framestream: Listening.addr=192.168.70.176:6000

23

root@vector-test:/etc/vector# tail -1 /tmp/dnstap-data-2024-10-10.log |jq -r
{
 "dataType": "Message",
 "dataTypeId": 1,
 "host": "192.168.70.176:34718",
 "messageType": "ClientQuery",
 "messageTypeId": 5,
 "requestData": {
 "fullRcode": 0,
 "header": {
 "aa": false,
 "ad": true,
 "anCount": 0,
 "arCount": 1,
 "cd": false,
 "id": 11098,
 "nsCount": 0,
 "opcode": 0,
 "qdCount": 1,
 "qr": 0,
 "ra": false,
 "rcode": 0,
 "rd": true,
 "tc": false
 },
 "opt": {
 "do": false,
 "ednsVersion": 0,
 "extendedRcode": 0,
 "options": [
 {
 "optCode": 10,
 "optName": "Cookie",
 "optValue": "EFj6rns2C3g="
 }
],
 "udpPayloadSize": 1232
 },
 "question": [
 {
 "class": "IN",
 "domainName": "www.quad9.net.",
 "questionType": "A",
 "questionTypeId": 1

24

This line in a “remap”:

 .asn = get_enrichment_table_record("asn", {“ip": ."sourceAddress"})

…results this addition to the dnstap object:
 . . .

 "asn": {

 "autonomous_system_number": 202125,

 "autonomous_system_organization": "Acacio Servicios Telematicos S.l.",

 "path": "42 202125",

 "prefix": "39.44.0.0/16"

 }, . . .

25

Enrichment

Then perform a log_to_metric, then an aggregation, and finally send to a Prometheus sink.

root@vector-test:/etc/vector# curl http://127.0.0.1:8332/metrics

 . . .

dnsanna2_asn{asn=“33915",asn_name="Vodafone Libertel B.V.”,
 country="NL",path="42 6830 33915”,
 pop_code="ams",rcode="noerror"} 798720163 1728871787005 . . .

26

Enrichment -> Aggregation

27

Performance
Example lab system

• 16 cores @ 2.2Ghz (E5-2660) w/16G 1333 Mhz RAM (circa 2012 - old!)

• 60k ingest events per second

• 60% CPU utilization avg.

• 6 aggregations, 23 remaps, 9 log-to-metrics - VERY heavy transforms

• RAM usage: depends on aggregations, but this one used 12G steady-
state (could be as little as 1g)

28

So what did we learn?
• Sample inside of dnstap (use “ProbaRule” function)

• Convert JSON into simpler protobuf for long-haul transport (CBOR?
maybe in the future!)

• dns_lookup is fatally slow; sample or cache (new feature pending)

• time aggregates for as long as possible (hours?)

• we had some delay to get more DNS-specific features added

• as always, error management takes up more time than you think it will

29

How did it help?
• Replaced years of ossified Go-based code - four different repositories

• All configuration-based - no compile needed for logic changes

• Sped up ingestion pipeline 5x or more

• Very simple binary distribution and installation - no dependencies

• One person, ~2 months part-time - retrofit of all “moving parts”

• Connected to existing Kafka stream-based model - smooth migration
by emulating older code outputs

30

…but it isn’t perfect.

• Still crashes (locks up, but does not halt) with high volumes every few
days - working on this bug (only 1 of our systems has this issue)

• DNSTAP ingestion takes a lot of CPU (bug? or just very non-optimized?)

• a few missing functions - ring buffers, notably

• still not “1.0” yet, despite ~6 years of production use by community

• user community is robust, but mostly asks questions. Fewer devs.

• timber.io was bought by Datadog but no commercial support

31

Things we built to help

• mrt2mmdb - convert full BGP table to MMDB-formatted database

• filter.py - strip MMDB files of non-essential data to take less memory

32

end

jtodd@quad9.net

33

