

OARC 43

26 Oct 2024

Project: Crunchy DITL

Jerry Lundström
Software Engineer
jerry@dns-oarc.net

mailto:jerry@dns-oarc.net

 2

Analyzing DITL in a different way

● Build a prototype platform that has capabilities to analyze DITL Data
– Using common scalable open source data tools such as Hadoop, Hive,

Parquet, Clickhouse and/or ENTRADA
– Using high level query languages such as Structure Query Language

(SQL)
– Primarily focused on the DNS message, but include some aspects of the

transport
– Be able to adapt to changes in the DNS, data processing and analysis

tools
❤ Verisign

 3

Picking a “Data Lake”

● Read a lot of articles on Data Lakes
● Asked DITL researchers how they query/process DITL today
● Talked to community members that run Data Lakes today
● Evaluated ClickHouse and Apache Iceberg/Spark

– Many issues getting Iceberg/Spark to work
– ClickHouse just worked

 4

ClickHouse

● Picked ClickHouse because:
– Great performance on common hardware
– Hardware specification very similar to our Ceph nodes, reusable if

project fails
● Two servers, 64GB mem, 5x12TB hdd lvm2 raid5
● Ceph had access/network issues, so copied DITL data locally

before processing

 5

Processing compressed PCAPs

● crunchy-munchy
– dnsjit, input.zmmpcap,

lib.clickhouse
● crunchy-control

– Flask/socket.io
– ZeroMQ

● crunchy-explorer

 6

Import results

● DITL 2020 RAW compressed PCAPs, 16.3 TB
● 297.93 B (297,925,409,197) DNS records imported
● ~11.5 TB compressed, ~50.7 TB uncompressed in ClickHouse

(per schema variant)
● 5 schema variants: 1) DNS hdr/flags as a bitfield or 2) as

booleans. 3) QNAME reversed and 4) as an array. 5) site,
server, source referrenced externally.

 7

QNAME reversed in an array

>>> "www.example.com".split(".")[::-1]
['com', 'example', 'www']

● Opens interesting ways to query data
– WHERE qname[1] = ‘com’ A specific TLD
– WHERE empty(qname) Root

 8

Ready… set… SELECT!
SELECT count(*)
FROM crunchy.ditl_bools
WHERE (qr = false) AND (do = true)

 ┌──────count()─┐
1. │ 207592008622 │ -- 207.59 billion
 └──────────────┘

1 row in set. Elapsed: 174.231 sec. Processed 297.93 billion rows, 480.97 GB
(1.71 billion rows/s., 2.76 GB/s.)
Peak memory usage: 118.27 MiB.

 9

Inventorizing EDNS params from priming queries
SELECT
 (edns, edns_flags, edns_bufsize),
 count()
FROM crunchy.ditl_rqn
WHERE empty(qname) AND (qtype = 2)
GROUP BY (edns, edns_flags, edns_bufsize)
ORDER BY count() DESC
INTO OUTFILE 'priming query edns parameters.txt'
FORMAT csv

 ↖ Progress: 192.93 billion rows, 6.14 TB (25.74 million rows/s., 819.55 MB/s.)
936 rows in set. Elapsed: 9942.741 sec. Processed 297.93 billion rows, 9.51 TB (29.96 million rows/s.,
956.93 MB/s.)
Peak memory usage: 218.77 MiB.

2h 45min compared to
custom C code taking
several days

 10

Q&A / Live demo in hallway during breaks!

jerry@dns-oarc.net
@jelu on Mattermost

#OARC Software

mailto:jerry@dns-oarc.net
https://chat.dns-oarc.net/community/channels/oarc-software

 11

Software Projects & Funding
https://www.dns-oarc.net/oarc/software

● Overview of software developed and maintained by OARC
– dsc, dsc-datatool, dnscap, dnsperf, dnsjit, drool, packetq, tinyframe,

dnswire and more
● Information about funding development, licensing policy, links to

GitHub project pages and mailing lists

https://www.dns-oarc.net/oarc/software

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

