
Authoritative Nameserver
Selection and Recursive

Resolvers

Geoff Huston, Joao Damas
APNIC Labs

OARC 44, February 2025

Nameserver Questions
• When presented with multiple authoritative nameservers /

multiple IP addresses how do recursive resolvers behave?
• How do we maximize performance and resilience in authoritative

nameserver configurations?

Recent(ish) work
“Recursives in the Wild: Engineering Authoritative DNS Servers”
Muller, Moura, Schmidt, Heidemann, 2017

https://ant.isi.edu/~johnh/PAPERS/Mueller17b.pdf

“To meet their goals of minimizing latency and balancing load across NSes and anycast,
operators need to know how recursive resolvers select an NS, and how that interacts with
their NS deployments.”

“… all name servers in a DNS service for a zone need to be consistently provisioned (with
reasonable anycast) to provide consistent low latency to users.”

Recent(ish) work
“Secure Nameserver Selection Algorithm for DNS Resolvers”
Zhang, Liu, Song, Huque, October 2024

https://datatracker.ietf.org/doc/draft-zhang-dnsop-ns-selection/

“Nameserver selection algorithms employed by DNS resolvers are not currently
standardized in the DNS protocol”

The document contains an informal description of the selection algorithms used in a
number of commonly used recursive resolvers (Bind 9, Unbound, Knot, PowerDNS,
Microsoft DNS)

And the RFC’s say:
RFC1034: “The sorting [of nameservers]… may involve statistics
from past events, such as previous response times and batting
averages.”

Batting averages????

Our Measurement
• Use a domain with four unicast authoritative nameservers
• Direct client systems to resolve unique DNS names using these

nameservers
• Track queries to each nameserver from each visible recursive

resolver

Our Measurement
• Use a domain with four dual-stack unicast authoritative nameservers

Frankfurt

Mumbai

Singapore

112ms

267ms

205ms

Atlanta
208ms

154ms

60ms

What are we expecting to see?

We anticipate seeing a “strong”
preference to query the authoritative
server with the lowest response time, and
a regular querying of all other
authoritative servers to see if their
response times have changed.

Some Lab Tests: Bind 9

• Observing Bind 9 against the four nameservers using 1 query per
second (test resolver is located in au)

The resolver tests the other
authoritative servers to ensure
that its is “attached” to the fastest
server.

This ‘other server’ test appears to
be irregular, with a slight bias
towards the second-closest
server

Some Lab Tests: Unbound

• Observing Unbound against the four nameservers using 1 query
per second (test resolver located in au)

Unbound is not so clearly
attached to the closest server
(ap) and also queries Mumbai and
Atlanta consistently.

The non-selected resolver
(Frankfurt) is queried irregularly

Some Lab Tests: Google
8.8.8.8
• Observing Google 8.8.8.8 against the four nameservers using 1

query per second (stub resolver located in au)

The Google resolver appears to
query all instances regularly.

There appears to be a slight
preference to use the Singapore
(ap) server

Some Lab Tests: Cloudflare
1.1.1.1
• Observing Cloudflare’s 1.1.1.1 resolver against the four nameservers

using 1 query per second (stub resolver located in au)

There is a visible preference to
use the servers located in
Singapore (ap) and Mumbai (in)

There is no common behaviour

In this small sample set we are not seeing a common behaviour
across recursive resolvers
• To optimize resolution performance the recursive resolver would

prefer to direct all its queries to the authoritative server that
responds in the shortest time
• However, the resolver would also like to track all other servers to

ensure that its preferred choice of server is still optimal
• It is not clear what units of time are used compare servers’

response performance, as some resolvers appear to treat a
subset of servers with diverse query/response times as equivalent

Let’s scale up the measurements

• We’ll use an ad-based measurement platform to enrol some 25M
stub resolvers per day and observe the interaction between the
various recursive resolvers used by these stub resolvers and their
behaviour against these four unicast authoritative servers

What we see – 1 Hour Profile

This is a resolver operated by Bharti Airtel
in India:
• It appears to spread its query load

roughly equally across the servers in
Mumbai, Frankfurt and Singapore

• But none to Atlanta!

What we see – 12 Hour
Profile

This resolver passed 2 queries to the
server located in Atlanta just 2 times in
this 12 hour period

From this graph it is not evident if there is
any preference between the other three
nameservers – but maybe summary
numbers can be more informative

A one-week profile of this
resolver

Server Queries Attachment
Time (secs)

Longest attached
Interval (secs)

Atlanta 87 1 0

Singapore 611,992 202,012 725

Frankfurt 581,799 183,051 637

Mumbai 300,751 32,153 580

How many seconds did the

resolver “latch” onto this

server?

What was the longest

period spent asking ONLY

this server

A large recursive resolver, located in India, appears to prefer distant
servers that are located in Singapore and Frankfurt over a server
located in Mumbai

8 Day Profile of 100
Resolvers

The 100 recursive resolvers that processed the largest number of queries in an 8-day period (1 Dec – 8 Dec)

The size of the point indicates the relative amount of time the resolver appears to “latch” onto an individual server

Most queries Fewer queries

What proportion of Resolvers
show “Attachment Preference”?
• Use the most active 1,000 recursive resolvers
• Define an “attachment preference” as maintaining an

authoritative server selection for more than 60% of the time
• 616 out of these 1,000 recursive resolvers show a strong attachment

preference

• Define “NO attachment preference” as having the major
attachment for no more than 40% of the time
• 53 out of the 1,000 recursive resolvers show a no attachment preference

How “good” is this
attachment preference?
• Do recursive resolvers who have a strong attachment end up

attaching to the server that is “nearest” to them?

• Let’s combine ping RTT measurements with these resolver / server
measurements

For example:
2a01:e00:ffff:53:2::13 is a recursive resolver operated by free.fr in France
RTT Measurements for this resolver. The ping measurements for this
resolver are:
 Atlanta – 95.3ms
 Singapore - 307.5ms
 Frankfurt – 9.8ms
 Mumbai – 241.6 ms

This resolver (located in Paris, France) was observed to query the Atlanta
server 70% of the time, a resolver that was 85ms further “away” than the
closest resolver (located in Frankfurt)

Results

• Of the 661 recursive resolvers that showed strong “attachment”
for a single resolver (queried one server more than 60% of the
time)
• 498 recursive resolvers responded to ping requests
• Of these 498 resolvers:
• 199 resolvers chose the server that had the lowest ping time
• The other 299 chose a more distant server
• The average additional RTT between the chosen server and

the closest server for these 299 resolvers was 142.3ms

Distribution of “Mismatch
Times”

There is a strong signal of a
time mismatch of <= 150ms

Is this indicative of some form
of rounding of the resolvers’
internal recursive-to-
authoritative delay timers of to
a unit of 150 ms increments?

What is this data telling us?

• You can’t rely on the preference algorithm used by today’s
recursive resolvers to make an optimal selection across a
dispersed set of unicast servers that will select the fastest
authoritative server

i.e. even if you do a great job of deploying diverse unicast nameservers,
recursive resolvers will likely muck it up and make sub-optimal selections
of their “preferred” nameserver!

How should you deploy a set
of nameservers?
Assuming that you want to optimize both performance and
availability…
• A distributed collection of unicast nameservers is not going to give

the best possible result
• Many recursive resolvers are not only poor at latching on to the fastest

nameserver, but they latch onto a more distant nameserver, giving a
worse resolution performance for non-cached name resolution

• Perhaps a better approach is to use anycast nameservers
• What do other domains do for their nameserver configuration?

Let’s look the Root Zone

• A small set of relatively intensely used domains whose
performance and reliability is (supposedly) critical

Profile of the Use of
Nameservers

Root Zone:
• TLDs: 1,445
• Authoritative Nameservers: 5,998
• Average Nameservers per TLD: 4.2
• Distribution of Nameservers per

TLD show strong preference for 4
or 6 nameserver names
• Dual Stack Nameservers: 5,687
• IPv4-only Nameservers: 321
• IPv6-only Nameservers: 3

Unicast vs Anycast – Root
TLD Nameservers
How many of these IP addresses are carried in an anycast cloud?

Unicast vs Anycast

How many of these IP addresses are carried in an anycast cloud?
• Query the IP address from a diverse set of locations(Atlanta, Frankfurt,

Sao Paulo, Singapore, Australia)
• If the Name Server ID (NSID) is constant when queried from a diverse set

of queries, then its reasonable to assume that the server’s IP address is
not part of an anycast cloud (as we anticipate that different anycast
instances will give a different NSID response)
• If the variance of DNS query times is not sufficiently large, then its

reasonable to assume that the server’s IP address is part of an anycast
service cloud.

Unicast vs Anycast – Root
TLD Nameservers

• Unique IP addresses of nameservers: 9,014

• Unicast IP addresses: 587
• “Limited” Anycast addresses: 5,868 (rtt variance > 150ms)

• “Diverse” Anycast IP addresses: 2,559 (rtt variance < 150ms)

Unicast vs Anycast

• TLDs served by only unicast nameservers: 8
• TLDs served by a mix of unicast and anycast servers: 378
• TLDs served by anycast servers only: 1,067
• TLDs served only by diverse anycast: 289
• TLDs served only by limited anycast: 202
• TLDs served by limited and diverse anycast: 576

AS Diversity
• In the root zone there are just 6

TLDs where all the zone’s
nameservers are held in a single AS
(and only 1 in a diverse anycast
configuration)
• On average each TLD has 10.1

distinct IP addresses of
nameservers
• On average each TLD has

nameservers located in 3.4 origin
Ases

Observations (1/3)

• DNS recursive resolvers do not, on average, make an accurate
selection of the “fastest” nameserver
• Which negates any potential performance benefits of a nameserver

deployment approach of a geographically diverse collection of unicast
nameservers
• Many recursive resolvers appear to use a timer with a granularity of

around 150ms to select the “fastest” nameserver

Observations (2/3)

• Anycast nameserver deployments can produce better outcomes,
but the effectiveness of this approach depends on the density of
the anycast constellation
• Limited density anycast constellations may produce sub-optimal

outcomes for some clients

Observations (3/3)

Resilience can be provided through the use of multiple anycast
service platforms
• How many such platforms is “optimal” is an open question
• More is not necessarily incrementally better, which leads to a suggestion

of the use of 2 or 3 diverse anycast platforms, depending on the level of
failover resilience you are after

BUT - DNSSEC

• The combination of multiple diverse nameserver providers, a
DNSSEC-signed domain name, and online signing introduces
some operational fragility, particularly when managing key rollover
and algorithm rolls
• This is still a not well charted space and operational incidents that

impact TLD availability still occur

Questions?

