
Zone Transfer Performance
Bill Snow, Digicert UltraDNS

2025-02-06

What about it?
• testing zone transfer performance is complicated
• there are data distribution choices

• how do we move data around?
• how do we test for capacity?

Motivation
Managed DNS and
Large installations

Alternatives
• source of truth might be a webapp db, or external primaries
• database replication is a good choice, except

o head of line problem
o monolithic scaling

• maybe consider zone transfers

Multi-tiered Installations
• multi-tiered propagation system

• TLDs
• distributor servers transfer in+out

• global distribution in ~5s

Methodology
How are we going to test capacity

Capacity testing
• how do you make a lot of zone transfers at once?
• the state machine is annoying

o notify, soa, transfer messages – what to measure?
o satisfy ourselves with cold start time - it's not a bad upper bound
o someone else must do this...

Concurrent sessions
• how do you make a lot of zone transfers at once?
• the state machine is annoying

o notify, soa, transfer messages – what to measure?
o satisfy ourselves with cold start time - it's not a bad upper bound
o someone else must do this

• the webapp people have lots of state machines

ab -c <concurrency>

Test setup

• just send a bunch of notifies
• how many transfers come back?
• how long do the transfers take?

Echo server
• not exactly an echo server

• answers every AXFR request with the same 30 record template
• ...and IXFR
• also-notifies
• soa serial number is always the current time in ms
• quick enough. Still hard to make it as quick as knot!
• use long refresh times

• test generates notify load on the echo server
• every soa request is out-of-date

What's on the target host?
• bind
• knot
• nsd
• powerdns with postgresql

• catalog zones

Benchmark start times
• they're all pretty fast up to 10k
• knot & nsd unbothered for a while
• test setup seems to work

• sanity –

Benchmark the echo server
• around ~3k notifies/s
• everything is normal up to 576
• think about that as xfr latency (time to respond)

• sanity –

Finally some test results
• total 3k notifies
• pretty fast
• concurrent sessions
• qps <1000 (more later)

• but this is the response time of
the target to the xfr request

Average time to transfer
• how long does it take from
notify time to test xfr completion

• echo server ms timestamp trick
• kind of nice up to 76

XFR transactions per notify
• how many xfrs do we get per
notify?

• nsd is a bit wild in this data
• refresh timers are difficult
• effects of concurrency are
sensible (otherwise)

Losing transfers
• validated the test environment

o match up log lines to stats
o 100% forwarded notifies

• receiving no notify errors
• receiving no xfr errors
• no nameserver error log lines!

Rate limiting in action
• the nameservers other than
bind will only do 1
transfer/second per zone

Catalog Zone Updates
Add and remove zones

What happens when we add and remove
zones?
• this is a more complicated state machine – what to include?
• for simplicity – just the catalog for now

• Why are you doing this? Why???

What happens when we add and remove
zones?

• tweak the echo server
• needs a few zones named after the timestamp
• send notify traffic

• The previous install isn't going to work, because there is only
one catalog

• nsd doesn't do multiple catalogs

Catalog update performance
• time from notify to transfer out of the
catalog zone (only)

• not as performant as zone updates
• testable!

Catalog update performance
• ideally 4:1 notify:transfer
• each catalog has 3 members

Catalog update performance
• average rate to complete 1k
catalog updates
• what's up with bind?

Catalog update performance
• more than expected transaction
timeouts
• xfr time was as expected

Conclusions
Do we like zone transfers?

It depends
• this all seems a lot more complicated than db replication

o on purpose!
• maybe that's what you need in your installation, or not
• installation-specific tuning is important

Future work
• need to deal with the refresh time by caching serial numbers
• multi-primary tests, failure scenarios
• simulated network latency
• more detail in the catalog updates, including member transfer time
• improved test performance

Thanks
This was fun

	Slide 1: Zone Transfer Performance
	Slide 2: What about it?
	Slide 3: Motivation
	Slide 4: Alternatives
	Slide 5: Multi-tiered Installations
	Slide 6: Methodology
	Slide 7: Capacity testing
	Slide 8: Concurrent sessions
	Slide 9: Test setup
	Slide 10: Echo server
	Slide 11: What's on the target host?
	Slide 12: Benchmark start times
	Slide 13: Benchmark the echo server
	Slide 14: Finally some test results
	Slide 15: Average time to transfer
	Slide 16: XFR transactions per notify
	Slide 17: Losing transfers
	Slide 18: Rate limiting in action
	Slide 19: Catalog Zone Updates
	Slide 20: What happens when we add and remove zones?
	Slide 21: What happens when we add and remove zones?
	Slide 22: Catalog update performance
	Slide 23: Catalog update performance
	Slide 24: Catalog update performance
	Slide 25: Catalog update performance
	Slide 26: Conclusions
	Slide 27: It depends
	Slide 28: Future work
	Slide 29: Thanks

